BA: Constructing Fault-Tolerant Overlays for Topic-based Pub/Sub

Chen Chen
joint work with Roman Vitenberg and Hans-Arno Jacobsen
Topic-connected overlay (TCO) [PODC’07]

An overlay G

G_a is topic-connected with one **TC-component**

G_b is NOT topic-connected with two **TC-components**
MinAvg-kTCO problem

- k-topic-connected overlay (kTCO)
 Topic-connectivity still holds as long as fewer than k nodes fail simultaneously on a topic.

- MinAvg-kTCO
 Given a set of nodes V, a set of topics T, and the interest function Int, construct a kTCO that has the least possible total number of edges, i.e., the minimum average node degree.
Our contributions

- Proposed MinAvg-k TCO problem and analyzed its complexity
- Designed two algorithms
 - GM2 algorithm for MinAvg-2 TCO
 - HararyPT heuristic for MinAvg-k TCO
- Conducted theoretical analysis and empirical evaluations
Complexity of MinAvg-\(k\)TCO

Theorem: For any positive integer \(k\), the MinAvg-\(k\)TCO problem parameterized by \(k\) is \textbf{NP-complete} and can not be approximated in polynomial time within a factor of \(O(\log |V|)\) unless \(P = NP\).
GM₂ algorithm for MinAvg-₂TCO

- **Lemma**: GM₂ outputs a ₂TCO within time
 \[O(|V|^4|T|) \]

- **Lemma**: The approximation ratio is
 \[O(U + \log |V||T|), \text{ where } U = \max_{t \in T} \{|V^{(t)}|\} \]

Note: MinAvg-₂TCO cannot be approximated within \(O(\log |V|) \) unless P = NP
Challenges to design GM²

Existing algorithms for TCO do not directly apply

- find progress measure towards 2TCO
- estimate progress as algorithm proceeds
- compare output to unknown optimum
Evaluation: GM\textsubscript{2}, GM, CyclePT

\[\overline{d}_{\text{GM2}} \approx 1.5 \cdot \overline{d}_{\text{GM}} \]
Evaluation: HararyPT

![Graph showing the average node degree against the number of nodes for different models and values of k.](image)
BACKUP
GM₂ algorithm for MinAvg-\mathcal{Z}TCO

Input: V, T, Int

Output: $2TCO(V, T, Int, E_{GM₂})$

1. $E_{GM₂} \leftarrow \emptyset$
2. while $(V, T, Int, E_{GM₂})$ is not $2TCO$ do
3. $e \leftarrow$ find edge with maximum edge estimate
4. $E_{GM₂} \leftarrow E_{GM₂} \cup \{e\}$
5. return $2TCO(V, T, Int, E_{GM₂})$
HararyPT heuristic for MinAvg-kTCO

Input: (V, T, Int), k

Output: kTCO(V, T, Int, E_{HPT})

1. V ← get an arbitrary sequence for V
2. for all $t \in T$ do
3. \[E^{(t)} \leftarrow \text{buildHarary}(k, V^{(t)}) \] \[\mathcal{O}(k|V||T|) \]
4. \[E_{HPT} \leftarrow \bigcup_{t \in T} E^{(t)} \]
5. return E_{HPT}
Evaluation: Topic diameters

\[\text{Diam}_{GM_2} \approx 0.5 \cdot \text{Diam}_{GM} \]
Two components in pub/sub implementation

- Construction of overlay
- Design of routing protocols

- Chockler et al. PODC'07
- Onus et al. INFOCOM'09
- G. Li et al. ICDCS'08
- M. Castro et al. JSAC'02

- Efficiently across the overlay network.
Why overlay for pub/sub?

- Limitations of other alternatives:
 - Full-mesh solution [GooPS; PNUTS]
 - Expensive communication overhead; Not scalable
 - Spanning tree
 - Vulnerable to churn; Costly to stabilize
Why overlay for pub/sub

- Advantages of the overlay approach:
 - Middleware philosophy and well-designed arch:
 - Decomposes the functionalities of routing protocols, overlay infrastructure, and network layer.
 - Reduces the complexity of the design and impl.
 - Enables exposing and virtualizing networking resources.
 - Demonstrates scalability and performance theoretically and empirically
 (mostly in topic-based pub/sub)
Why low node degrees?

- It costs lots of resources to maintain adjacent links for a high-degree node
 - A node must monitor the availability of each of its neighbors (heartbeats and keep-alive state)
- Each link takes responsibilities for a pub/sub
 - protocols
 - service components
 - message queues
- Other overlay designs also aim at low fan-out
 - DHT
 - Peer-to-peer video streaming
 - wireless network
Why topic-connected?

- **Eliminates immediate rely nodes:**

 Nodes not interested in a topic never need to contribute to message dissemination on that topic.

- **Supports efficient pub/sub routing**

 - Saves network and computational resources otherwise wasted on forwarding messages of no interest.

 - Results in simpler routing and smaller forwarding tables.

- **Provides better security**

 Messages are to be shared across a network among a set of trusted users without leaving this set.
Preliminaries

- V: a set of nodes
 - T: a set of topics
 - Int: an interest function: $V \times T \rightarrow \{\text{true, false}\}$
 - a node $v \in V$ is interested in some topic $t \in T$ iff $Int(v, t) = \text{true}$
 - E: set of output overlay edges

- Topic-connected component (TC-component): connected component in a topic-induced sub-graph for a topic t

- $TCO(V, T, Int, E)$: topic-connected overlay (TCO)
 - Contains only one TC-component for each topic