Demo: Combat State-Aware Interest Management for
Online Games

Jing Yi Wang!, Kaiwen Zhang!*3, Hans-Arno Jacobsen?
Technical University of Munich
2Middleware Systems Research Group
3University of Toronto

Abstract

Massively multiplayer online role-playing games (MMORPGs)
allow thousands of players to interact with each other in a

large-scale virtual environment. Interest management is an

important technique used to raise the scalability of a game by

limiting the amount of information transmitted to the play-
ers according to their relevance. In this paper, we focus on

the problem of performing interest management during com-
bats, which are highly interactive and fast-paced events. We

have developed a combat state-aware interest management

(CSAIM) system which can dynamically adjust update rates

based on the current game context, thereby maximizing the

utility in the trade-off between consistency and performance.
We have implemented CSAIM in MMOnkey, our MMORPG

research framework. Our interactive demo client visualizes

the interest area adjusted based on players’ actions.

CCS Concepts - Computer systems organization —
Client-server architectures;

Keywords online games, interest management

ACM Reference Format:

Jing Yi Wang!, Kaiwen Zhang’>%3, Hans-Arno Jacobsen?. 2017.
Demo: Combat State-Aware Interest Management for Online Games.
In Proceedings of Middleware Posters and Demos ’17: Proceedings of
the Posters and Demos Session of the 18th International Middleware
Conference, Las Vegas, NV, USA, December 11-15, 2017 (Middleware
Posters and Demos ’17), 2 pages.
https://doi.org/10.1145/3155016.3155019

1 Introduction

Massively multiplayer online role-playing games (MMORPGs)
inhabit thousands of players inside a persistent virtual world.
The game state, including characters and other entities, is
persisted throughout the game’s lifetime, which lasts for
multiple years. The authoritative state of the game world

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Middleware Posters and Demos ’17, December 11-15, 2017, Las Vegas, NV, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5201-7/17/12.
https://doi.org/10.1145/3155016.3155019

17

Client Request Server
] Client Peer || World
Denial Entity
Update

Figure 1. Simplified MMOnkey Architecture

is stored on one or more servers. Players interact with the
servers through actions and receive a replica state of the
game world. Interest management is employed to determine
which portion of the overall game state is replicated at each
player client [2]. For instance, a player should only be in-
formed about changes which are visible to the player.

The two primary objectives of the underlying MMORPG
system are scalability and interactivity. Scalability refers to
the ability of the game to support thousands of players con-
currently with acceptable latency (e.g. > 100ms). Interactivity
refers to the degree to which players can interact with the
game world. Games that provide players with the ability
to perform frequent and complex actions are usually more
enjoyable. Thus, consistency becomes an issue, since the
outcome of actions executed server-side must correspond to
the expected state observed locally at the client.

In this demo, we focus on the problem of performing in-
terest management in combat. A battle is a highly interactive
scenario which occurs when players belonging to different
teams repeatedly interact with one another (e.g. attacking
with a weapon or a spell) in order to perform an objective
(e.g., defeat the opposing force). Combat is the most inter-
active aspect of MMORPGs, since players are engaged in
complex actions, which involve multiple players, in rapid
succession. Latency is critical since players must be able to
quickly react to the actions of others. In addition, consistency
must be maintained to ensure players are correctly informed
about the latest state of the battle.

Therefore, we argue that traditional interest management
techniques must be extended to explicitly consider combat.
Our proposed system, called Combat State-Aware Interest
Management (CSAIM), dynamically adjusts the update rate
for each player based on the context of the combat. This
includes the profile of each player involved in a specific bat-
tle: the types of actions they have equipped. By leveraging
battle-specific semantics, CSAIM provides the right balance

https://doi.org/10.1145/3155016.3155019
https://doi.org/10.1145/3155016.3155019

Middleware Posters and Demos *17, December 11-15, 2017, Las Vegas, NV, USA

J. Wang et al.

P’(X)
L] /
|I
Client b
entity \ A

Client'\

entity \

Figure 2. AOE: Inconsistency

between consistency and performance. We demonstrate our
implementation using our MMORPG framework, which vi-
sualizes the impact of our solution in an interactive demo.

2 Background

Figure 1 depicts a reference architecture for MMORPGs.
Clients send action requests to the server to modify enti-
ties in the game world. The server can deny or accept the
request. On acceptance, the change is replicated to a subset
of clients, as determined by their interest, which is reflected
in the client peer stored at the server.

Interest management (IM) [1] is an important technique
to reduce network load. IM filters messages and sends only
relevant data to each player client. Every client peer (a server-
side representation of the client) has an interest area of the
game world [3]. The peer subscribes to the update channel
of every entity intersecting the interest area. Upon receipt
of a subscription, the entity sends a snapshot of its current
state to the new subscriber. An entity whose state changes
publishes a message to its update channel.

Entity position updates account for the majority of the
load. They have to be sent at a high enough frequency to
maintain accuracy of the client replica. Figure 2 shows a
counter-example when position updates are infrequent. The
player performs an Area of Effect (AOE) action on the marked
cone area. The player sees X at position P(X), the last known
position, and thus expects to hit X with the AOE action.
However, X is actually at P’(X), outside of the AOE area.
This position has not yet been replicated to the client and
causes the player’s attack to miss, which is not consistent
with the player’s view of the battle.

3 State-aware interest management

CSAIM dynamically adjusts the update rate depending on the
battle state. An interest area in CSAIM has high frequency
and low frequency areas, as depicted in Figure 3 and Fig-
ure 4. High frequency areas are painted in green. In order to
smoothen the movement of low frequency, we employ dead
reckoning methods to interpolate the positions [4]. Dead
reckoning lacks accuracy compared to high frequency up-
dates and should only be used for data of lesser importance.

Figure 3. AOE Consistency Req.

18

Figure 4. Target: Consistency Req.

CSAIM builds a table using the profile of involved players
to determine consistency requirements. A table entry con-
sists of: the minimum required update frequency, a distance
interval, and the affected entity group (i.e., enemies or allies).

Players equip them self with different actions prior to the
battle instance, thus allowing CSAIM to optimize itself for
that situation. Figure 3 depicts the adjusted interest area,
when a player is equipped with an AOE action. The AOE
action forms a cone shape originating from the player with a
certain radius. Therefore, the player requires high frequency
updates in a circle of the same radius as the action in order
to accurately determine which players will be affected.

Target actions only require the entity target to be in range,
but not its exact position. This creates a ring-like high fre-
quency area (see the outer ring in Figure 4). Frequency tables
are adjusted during game play, which means that if an ac-
tion is on cool down then the corresponding table entry is
ignored until the action is recharged.

4 Demo Implementation

CSAIM is implemented on our MMORPG research frame-
work MMOnkey. In our interactive demo client, the player
can equip itself with different combat actions with differ-
ent consistency requirements. Frequency tables used by the
server can be visualized on the client. Figure 4 is a screenshot
of the client equipped with a low range AOE action and a
high range target action.

5 Acknowledgements
Supported by Alexander von Humboldt Foundation.

References

[1] Jean-Sébastien Boulanger, Jorg Kienzle, and Clark Verbrugge. 2006.
Comparing Interest Management Algorithms for Massively Multi-
player Games. In NetGames "06.

Graham Morgan, Fengyun Lu, and Kier Storey. 2005. Interest Man-
agement Middleware for Networked Games. In Proceedings of the 2005
Symposium on Interactive 3D Graphics and Games (I3D *05). ACM, New
York, NY, USA, 57-64. https://doi.org/10.1145/1053427.1053436
Katherine L. Morse, Lubomir Bic, and Michael B. Dillencourt. 2000.
Interest Management in Large-Scale Virtual Environments. Presence 9,
1 (2000), 52-68. https://doi.org/10.1162/105474600566619

Curtiss Murphy. 2011. Believable dead reckoning for networked games.

[2

—

3

—_

[4

—

In Game Engine Gems. Vol. 2.

https://doi.org/10.1145/1053427.1053436
https://doi.org/10.1162/105474600566619

	Abstract
	1 Introduction
	2 Background
	3 State-aware interest management
	4 Demo Implementation
	5 Acknowledgements
	References

