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ABSTRACT

It is primarily important and challenging to develop a dis-
tributed publish/subscribe (pub/sub) system for large-scale
workloads. On the one hand, structured overlays (e.g., small-
world networks) scale logarithmically in terms of node de-
grees, propagation delay, and so on, but pub/sub routing on
these structured overlays often exerts considerable overhead
on each node for forwarding irrelevant messages. On the
other hand, the unstructured topic-connected overlay (TCO)
can eliminate unnecessary pure forwarders, since each topic
induces a connected sub-overlay among all nodes interested
in this topic; however, the node degrees and diameters are
unbounded in a constructed TCO.
To achieve the best of both worlds, we design a practi-

cal pub/sub system in peer-to-peer settings, including both
routing protocols and overlay topologies. First, based on
small-world overlays, we propose the Nearest Subscribers
and Matched Fingers (NSMF) routing protocol for topic-
based pub/sub. Second, to reduce the routing overhead of
NSMF, we construct small-world overlays that aim to maxi-
mize interest closeness, where each node strives to point its
small-world fingers to nodes with common interests.
We validate our design with empirical evaluation and show

the advantages, in both routing efficiency and overlay qual-
ity. As compared to regular small-world networks, our sys-
tem reduces over 30% of the costs in both pure forwarding
messages and the average path length.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.4 [Computer-Communication Networks]:
Distributed Systems; H.4.3 [Information Systems Appli-

cations]: Communications Applications
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1. INTRODUCTION
Publish/Subscribe (pub/sub) systems constitute an at-

tractive choice as communication paradigm and messaging
substrate for building large-scale distributed systems. This
work concentrates on the topic-based pub/sub model: the
system manages messages in categories named topics, pub-
lishers associate each publication message with one or more
specific topics, and subscribers register their interests in a
subset of all topics. Many real-world applications adopt
topic-based pub/sub for message dissemination [1, 2, 12, 19].

A distributed pub/sub system often organizes nodes (e.g.,
brokers, servers or routers) in a federated or peer-to-peer
manner as an overlay at the application or network layer.
Once an overlay network is defined, the pub/sub system re-
lies on some routing protocol to build message dissemination
paths and to deliver publications to all subscriber nodes.
Typically, a pub/sub routing protocol defines the forward-
ing function, which determines the set of next-hops for an
incoming publication message at any node. Overlay topolo-
gies and routing protocols are closely related – both impact
the performance and scalability of the pub/sub system.

It is of fundamental challenge to seamlessly tie both rout-
ing and overlay together in the system design. Many pub/sub
implementations concentrate on one aspect only. For exam-
ple, some pub/sub systems just employ the most generic
overlays (e.g. a tree or full-mesh) and push all weights on
the routing protocols. These pub/sub routing protocols are
naturally difficult to scale by design, because they inevitably
rely on sophisticated matching engines and large forwarding
tables. Recently, many pub/sub systems try to migrate part
of the complexity to overlay design. A well-constructed over-
lay could potentially simplify the pub/sub routing protocols
and improve the efficiency of message dissemination.

Pub/sub overlay design poses unique challenges for dis-
tributed systems, such as the support of pub/sub routing
and scalability with the number of topics (i.e., diverse in-
terests), subscription size, and the volume of publications.
We can generally classify existing pub/sub overlays into two
categories: (1) structured and (2) unstructured. On the one
hand, structured overlays, e.g., small-world networks [15,
17, 28], are scalable and robust with respects to node de-
grees, the path length of end-to-end delivery, and so on, but
pub/sub routing over these structured overlays often exerts
considerable dissemination overhead on each node for for-
warding messages in which the node is uninterested [5, 13,



14, 24]. On the other hand, many unstructured overlays
strive to minimize the amount of irrelevant messages being
forwarded for pub/sub routing [4, 11, 23, 27]. In particular,
topic-connected overlay (TCO) [6, 7, 8, 9, 10, 11, 22] can
eliminate unnecessary pure forwarders, since each topic in-
duces a connected sub-overlay among all nodes interested in
this topic; however, it is challenging to bound node degrees
or diameters for a TCO, even assuming centralized control
and global knowledge. While resource constraints are obvi-
ous and mandatory in the context of peer-to-peer, mobile
or sensor networks, the original motivation for TCO [10, 11]
stem from a bounded-degree requirement in the cloud en-
vironments, where full-mesh overlays proved unscalable to
connect application servers in an IBM production data cen-
ter.
This work combines these two methods and attempts to

gain merits from both. We incorporate basic principles of
small-world networks and TCOs into a practical design for
pub/sub systems in a peer-to-peer manner, including both
routing protocols and overlay topologies. We show analyt-
ically and empirically that our pub/sub routing protocol
achieves vast improvement on small-world and interest-close
overlays as compared to regular small-world networks; in
particular, our system reduces over 30% of the costs in both
pure forwarding messages and the average path length.

2. RELATED WORK
In order to improve distributed pub/sub system perfor-

mance and scalability, two directions have crystallized in
the literature: (1) the design and implementation of rout-
ing protocols such that publications and subscriptions are
distributed in a most efficient way across the overlay net-
work (see [18, 29]) and (2) the construction of the overlay
topology such that network traffic is minimized (e.g., [6, 10,
14, 22, 16]).
A significant body of research has been centered around

either routing or overlay alone. Many earlier pub/sub sys-
tems put all weights on the routing protocols only, assuming
the most naive overlays, such as trees or full-meshes. To sup-
port pub/sub routing, many nodes have to maintain a global
view of all subscriptions on all nodes in the system. Conse-
quently, such pub/sub systems suffer from large forwarding
tables, excessively high matching complexity, need for selec-
tive message flooding, expensive routing computations, etc.
Recently, many pub/sub systems make efforts to migrate

part of the complexity from routing protocols to overlay de-
sign. We can generally classify current pub/sub overlays into
two major categories: (1) structured and (2) unstructured.
The structured overlays have been widely used in a variety

of distributed systems. In particular, the structures of small-
world networks (originated in [17]) inspired several popular
DHT designs, e.g., Chord [28] and Symphony [20]. Small-
world networks and DHTs also provide solid groundwork
for our system design. Still, pub/sub overlays are funda-
mentally different from these canonical distributed overlay
networks. For example, a DHT [15, 17, 20, 26, 28] maps
IDs (as keys) to nodes – this mapping is self-dependent but
determines the overlay topology and routing scheme; DHTs
are ID-centric and thus inappropriate for organizing nodes
that are semantically related, while pub/sub also needs to
accommodate additional semantic information, e.g., topic
interests at each node. As a result, pub/sub overlay de-
sign poses unique challenges for distributed systems, such as

(a) construction of a semantic overlay for pub/sub; (b) sup-
port of routing protocols for subscription placement, interest
matching, message dissemination, etc.; and (c) scalability
with the number of topics (i.e., diverse interests), the sub-
scription size, and the volume of publications.

Unstructured overlays are also appealing candidates for
pub/sub overlay design. The TCO property is explicitly en-
forced in [4, 11, 23, 27] and implicitly manifest in [3, 14, 24,
25], because topic-connectedness effectively reduces unnec-
essary intermediate overlay hops for message delivery. How-
ever, it is unrealistic to keep node degrees or diameters of
the TCO bounded, even if we can apply the state-of-the-art
centralized algorithms [6, 7, 8, 9, 10, 22].

3. ROUTING ON SMALL-WORLD

3.1 Small-world networks for pub/sub
We abstract a distributed topic-based pub/sub system as

an instance (V, T, I), where V is the set of nodes, T is the
set of topics, and I is the interest function s.t. I : V × T →
{0, 1}. Node v ∈ V is interested in topic t ∈ T iff I(v, t) = 1.
We also say that node v subscribes to topic t.

Our pub/sub system design relies on a one-dimensional
small-world network model [20, 26, 28]. We arrange all nodes
along a ring and equip each node with a handful of small-
world fingers, whose distributions are inversely proportional
to the small-world distances.

Each node v ∈ V has a unique identifier (i.e., nodeId)
on a one-dimensional cyclic identifier space. For clarity and
conciseness, we assume that every nodeId is log |V | bit, and
consequently one node is present for every identifier in the
space. Practical systems typically use logN bit nodeIds
where N ≫ |V |, so nodes do not fully populate the entire
identifier space, which is essential for churn handling, e.g.,
node joins and departures. This assumption facilitates the
presentations while not affecting the correctness of our sys-
tem design [15], especially since this work does not consider
dynamic churn in the system. Note that our pub/sub system
design inherits churn resilience from small-world networks
(see §3 and §4), which has been extensively studied [15, 20,
26, 28].

The small-world distance from node v to node w, which
we denote by swDist(v, w), is the clockwise numeric distance
from v to w on the circle1. We say that node w (or edge
e = (v, w)) is in the i-th small-world phase of node v, if

swDist(v, w) ∈
[

2i, 2(i+1)
)

, i.e., w ∈
[

v + 2i, v + 2(i+1)
)

;

we also denote the small-world phase as v.swPhase(v, w) =
v.swPhase(e) = i.

Property 1. In a network of the node set V , each node
v ∈ V maintains k = Θ(log |V |) small-world fingers, and
its i-th finger, v.swFinger [i] where 0 ≤ i < k, points to a
node in the i-th small-world phase of v, i.e., v.swFinger [i] ∈
[

v + 2i, v + 2(i+1)
)

.

In the discussion that follows, we refer to small-world net-
works specifically as overlays with Property 1. Note that
many DHTs attain this property [20, 28]. In Chord [28],

1 We can also define swDist(v, w) as the absolute dis-
tance between v and w, i.e., minimum of the clockwise and
counter-clockwise distances. This difference only affects the
constant factors hidden behind the Big-O notations [15, 20].



Data Structure 1 Publication messages

Message: a publication message transmitting between nodes

// publication information
◦ topic: the topic associated with the publication
◦ content : the content of the publication

// internal fields for pub/sub routing
◦ low : the lowest point of the targeted range, inclusive
◦ high: the highest point of the targeted range, exclusive

Data Structure 2 Routing table at node v ∈ V

⊲ v.swFinger : the finger list indexed by the small-world phase in
the id space, v.swFinger [i] ∈

[

v + 2i, v + 2(i+1)
)

, 0 ≤ i < log |V |.
⊲ v.nearestSub: a hashtable that maps each topic t ∈ T to
v.nearestSub(t), the subscriber of t that is nearest to v clockwise.

for instance, node v ∈ V keeps exactly k = log |V | fingers,
where v.swFinger [i] = v + 2i, 0 ≤ i < k. As [15] points
out: although Chord defines specific small-world fingers for
each node, this rigidity is not critical, and small-world net-
works allow flexibility for finger selection; specifically, rout-
ing between any two nodes is still O(log |V |) hops, even if
node v ∈ V picks v.swFinger [i] as any node in the range
[

v + 2i, v + 2(i+1)
)

, 0 ≤ i < k.

3.2 Pub/Sub routing on small-world networks:
Nearest Subscribers and Matched Fingers

Before proposing our pub/sub routing protocol on small-
world networks, we now introduce Data Structure 1 and 2.
Data Structure 1 defines the publication message for our

pub/sub routing protocol. Given a message msg , msg .topic
and msg .content together describe the data in a publica-
tion. Fields msg .low and msg .high jointly define the tar-
geted range of msg , i.e., msg should reach all matched sub-
scribers in the range [msg .low ,msg .high). For example, an
initial publisher at v ∈ V always specifies the target of the
publication message to span the whole identifier space, i.e.,
[v, v). Note that msg .low also indicates the first destination
of the message.
Data Structure 2 presents the local routing table at each

node v ∈ V . First, node v keeps a list of small-world fingers,
v.swFinger , which corresponds to Property 1; we will dis-
cuss how to construct these finger lists in §4. Second, node
v maintains in v.nearestSub the nearest subscriber for each
topic t ∈ T ; we assume that a membership service is avail-
able to provide such knowledge, which is beyond the scope
of this work.
Protocol 3 specifies our routing protocol for pub/sub, Near-

est Subscribers and Matched Fingers (NSMF). Upon receiv-
ing an incoming message msg at node v, Protocol 3 is re-
sponsible for deliveringmsg to all matched subscribers in the
targeted range [msg .low ,msg .high). Line 2 checks whether
v is msg .low , the first destination of msg : if not, Line 16
simply invokes send(msg), which forwards msg to one of
its fingers that is nearest to msg .low ; if v = msg .low , then
Lines 3-14 spread this message to an array of next-hops,
X, that collectively cover the targeted range. Line 3 sets
t = msg .topic, and Line 4 computes X by combining (1) all
fingers that subscribe to t and lie in the targeted range of
msg and (2) the nearest subscriber for t. Line 5 first sorts all
next-hops in X in ascending order according to the small-
world distances from v, and thus X0 = v.nearestSub(t).

Protocol 3 Nearest Subscribers and Matched Fingers
(NSMF) routing for pub/sub at node v ∈ V

v.NSMF()

1: upon receiving a message msg

2: if v = msg .low then
3: t← msg .topic

4: X ← {u ∈ v.swFinger |I(u, t) ∧ u ∈ [msg .low ,msg .high)}
⋃

{v.nearestSub(t)} // initialize X, the next-hop array

5: sort X in ascending order with regard to small-world
distances from v

6: if |X| > 0 then

7: for all j = 0, . . . , |X| − 1 do
8: msgj ← clone msg

9: msgj .low ← Xj

10: if j + 1 < |X| then
11: msgj .high ← Xj+1

12: else
13: msgj .high ← msg .high

14: send(msgj)
15: else
16: send(msg)

v.send(msg)

1: forward msg to v’s finger that is nearest to msg .low

Then, Lines 6-14 prepare a message msgj for every next-hop
Xj , j = 0, . . . , |X| − 1. Each Xj is in charge of a sub-range
as specified in msgj , and the union of all these sub-ranges
spans the entire targeted range of msg [msg .low ,msg .high):
X0, . . ., Xd−2, and Xd−1 cover [X0, X1), . . ., [Xd−2, Xd−1),
and [Xd−1,msg .high), respectively, where d = |X|. We skip
[msg .low , X0) = [v, v.nearestSub(t)), because this sub-range
contains no subscriber of t. Following Line 14, Xj will re-
ceive msgj from v and recursively invoke Protocol 3. These
recursive processes continue, until the publication message
reaches all subscribers in the targeted range.
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Figure 1: A running example for Protocol 3

In Fig. 1, we have a small-world network of 16 nodes, i.e.,
V = {0, 1, . . . , 15}. The figure highlights the small-world
fingers of node 1, which connects to node 2, 4, 7, and 11,



respectively at each phase. For some topic t ∈ T , nodes that
subscribe to t are V (t) = {1, 5, 7, 9, 11, 14}, which Fig. 1 il-
lustrates as shaded vertices. Suppose that node 1 receives
a message msg on t with the targeted range [1, 10), which
we simply denote as msg [1, 10). Node 1 should send msg to
all nodes that are interested in t and in the range of [1, 10),
i.e., {5, 7, 9}. After Line 5, node 1 obtains the sorted next-
hop array X = {5, 7}: X0 = 5 is the nearest subscriber for
t, and X1 = 7 is a matched finger; X excludes the other
matched finger, node 11, because 11 /∈ [1, 10). Node 1 pre-
pares msg0 [5, 7) for X0 = 5 and msg1 [7, 10) for X1 = 7.
Since node 1 has no finger linking to X0 = 5, it sends msg0

to node 4, which then forwards msg0 to node 5. Node 1
directly sends msg1 to node X1 = 7. Upon receiving msg0

and msg1, both node 5 and 7 call Protocol 3, respectively.
Node 5 sends no further messages, since its nearest sub-
scriber (node 7) is out of the targeted range of msg0 [5, 7).
Node 7 sends a single message msg ′ [9, 10) to its nearest
subscriber 9. The recursive processes end at node 9, since
node 9 is the only one in the targeted range of msg ′ [9, 10).
In summary, NSMF accomplishes pub/sub routing by dis-
seminating the publication message to all subscribers in the
targeted range.

Lemma 1. Protocol 3 guarantees to eventually deliver each
publication message to all subscribers in the targeted range,
if the overlay is a small-world network with Property 1.

4. SMALL-WORLD AND INTEREST-CLOSE

OVERLAY
We focus on how to construct the overlays that best suit

our pub/sub routing protocol NSMF. First, to ensure cor-
rectness of Protocol 3, the overlay should be a small-world
network with Property 1 (see Lemma 1). Second, we hope
the overlay to yield minimum routing overhead, which this
work and many others [4, 11, 13, 14, 23, 24, 27] define to
be the total number of pure forwarding messages, i.e., the
messages that each node v ∈ V receives yet has no interest
in.
Intuitively, diminishing the routing overhead prefers in-

terest closeness, meaning that the overlay places nodes with
similar interests close to each other. Topic-connected over-
lay (TCO) is one way to realize interest closeness, which
promises to be capable of eliminating the routing overhead
in pub/sub [6, 10, 11]. Informally speaking, TCO organizes
all nodes interested in the same topic in a directly connected
dissemination sub-overlay. TCO can support the transmis-
sion of publications on each topic to all subscribers without
using non-interested nodes as intermediate relays. Pub/sub
routing atop TCOs saves bandwidth and computational re-
sources otherwise wasted on forwarding and filtering out
unwanted messages. Unfortunately, TCO and Property 1
are at odds with each other. More specifically, it is NP-
hard whether we can construct a TCO with a fixed average
or maximum node degree [6, 7, 10, 22], while Property 1
strictly restricts each node to possess a bounded number of
small-world fingers. Therefore, we decide to relax the TCO
requirement by approximating a TCO.
Formally speaking, given an instance (V, T, I), we regard

the pub/sub overlay as an undirected graph G = (V,E) over
the node set V with the edge set E ⊆ K, where we denote
by K the ground set of all possible edges among V , i.e.,
K = V × V . Given G = (V,E), the sub-overlay induced by

t ∈ T is a subgraph G(t) = (V (t), E(t)) such that V (t) = {v ∈

V |I(v, t) = 1} and E(t) = {(v, w) ∈ E|v ∈ V (t) ∧ w ∈ V (t)}.
A topic-connected component (TCC) on topic t ∈ T , is a

maximal connected subgraph in G(t). If G(t) contains at
most one TCC for each topic t ∈ T , then G = (V,E) forms
a topic-connected overlay (TCO) for (V, T, Int), which we
denote as TCO(V, T, Int , E).

Given an edge set E ⊆ K, TCC (E) stands for the total
number of TCCs in G = (V,E) over all topics T ,

TCC (E) =
∑

t∈T

(

#TCCs in G(t) = (V (t), E(t))
)

(1)

By definition,

TCC (∅) =
∑

t∈T

∣

∣

∣
V (t)

∣

∣

∣
(2)

TCC (K) =
∣

∣

∣
{t ∈ T : V (t) 6= ∅}

∣

∣

∣
(3)

TCC (E) = TCC (K) iff E ⊆ K forms a TCO (4)

We can use TCC (E) to measure the progress towards
TCO: suppose E is initially empty and grows by adding
edges one by one, then TCC (E) starts from TCC(∅) and
strictly decreases with every edge addition down to an ab-
solute limit, i.e., TCC (K).

Further, we define the contribution (towards TCO) of edge
e with respect to a given edge set E to be the number of
TCCs that would be reduced by adding e upon E.

contribE(e) = TCC (E)− TCC (E + e) (5)

Then, we have Lemma 2:

Lemma 2. Given an instance (V, I, T ) and an edge set
E ⊆ K, we place an arbitrary order on all edges in E, i.e.,
E = {e1, e2, . . . , em}. Let E0 = ∅ and Ei = {e1, ..., ei}, 1 ≤
i ≤ m, then E forms a TCO iff

∑

1≤i≤m

contribEi−1
(ei) = TCC (∅)− TCC (K)

As Lemma 2 shows, TCC (∅) − TCC (K) represents the
amount of TCCs that E ⊆ K should reduce to achieve a
TCO. We define the TCO support ratio for an overlay edge
set E:

TcoSuppR(E) =
TCC (∅)− TCC (E)

TCC (∅)− TCC (K)
, ∀E ⊆ K (6)

The TCO support ratio TcoSuppR can serve as an indi-
cator of the overlay quality: (1) TcoSuppR(E) ∈ [0, 1],
TcoSuppR(∅) = 0, and TcoSuppR(E) = 1 iff E forms a
TCO; and (2) TcoSuppR(E) is non-decreasing as E expands,
i.e., TcoSuppR(E) ≤ TcoSuppR(E′), if E ⊆ E′ Thus, the
higher TcoSuppR(E) is, the closer E approximates a TCO.

We formalize the problem of small-world and interest-close
overlay design as follows:

Problem 1. Given an input instance (V, T, I), construct
an edge set E ⊆ K that maximizes TcoSuppR while forming
a small-world network with Property 1.

Alg. 4 specifies GrSwico, a greedy algorithm for Problem 1.
Alg. 4 starts from an empty edge set E = ∅ and constructs E
iteratively, until attaining a small-world network with Prop-
erty 1. At each iteration, Alg. 4 greedily adds to E from



Algorithm 4 Greedy heuristic for Small-World and
Interest-Close Overlay (GrSwico)

GrSwico(V, T, I)

Input: (V, T, I)

Output: E, which forms a small-world network for V

1: E ← ∅, P ← V × V

2: while P 6= ∅ do
3: e′ ← argmaxe∈P contrib(e)

4: E ← E + {e′}
5: P ← P − {e′}
6: for all e : v.swPhase(e) = v.swPhase(e′) where v ∈ e do

7: P ← P − {e}
8: return E

the potential edge set P an edge e′ with the highest contri-
bution (see Lines 3-4). After adding e′, Property 1 enforces
Lines 5-7, which remove from P all edges that belong to the
same small-world phase as e′, because there is only one spot
for each small-world phase. Suppose, for example, Alg. 4
adds edge (1, 7) in Fig. 1 at some iteration, then we need
to remove from P some edges, such as {(1, 5), (1, 6), (1, 8)},
which are also in phase 2 of node 1. Based on [6, 8], we
prove that Alg. 4 is correct and runtime efficient:

Lemma 3. Alg. 4 outputs an edge set E for Problem 1 in
time O(|V |2|T |).

Lemma 3 shows that GrSwico produces a small-world net-
work with Property 1. Therefore, our designed overlays pos-
sess all nice properties of small-world networks, e.g., loga-
rithmic latency for end-to-end message delivery, and churn
resilience [15, 20, 26, 28].
Alg. 4 is a static and centralized algorithm for pub/sub

overlay design. However, GrSwico provides a baseline for
more sophisticated approaches (e.g., decentralized protocols),
because it dominates typical small-world networks for pub/sub
routing (see §5).

5. EVALUATION

5.1 Experiment setup
We implement all algorithms and routing protocols in

PeerSim [21]. We also develop two small-world overlays as
comparison baselines for GrSwico:
(1) Chord [28], a DHT that always selects the finger as the

first node in each small-world phase, i.e., v.swFinger [i] =
(v + 2i), 0 ≤ i < log |V |, ∀v ∈ V .
(2) RandomSW, a small-world network that randomly chooses

the finger in each small-world phase: all nodes in the range
[

v + 2i, v + 2i+1
)

are equally probable to become v.swFinger [i],
0 ≤ i < log |V |, ∀v ∈ V .
The overlays produced by GrSwico, Chord and RandomSW

have the same node degrees and preserve Property 1. As a
result, the expected path length to route between any two
nodes is O(log |V |) hops in all three overlays [15].
We synthetically generate the input instances (V, T, I) as

follows: |V | ∈ [1 000, 10 000], |T | ∈ [1 000, 10 000], and each
node v ∈ V has a fixed subscription size |{t ∈ T |I(v, t) =
1}| = 20. We associate each topic t ∈ T with p(t) such that
∑

t
p(t) = 1, and each node subscribes to t with probability

p(t). The value of p(t) follows either a uniform, a Zipf (with
α = 2.0), or an exponential distribution, which we call Unif,

Zipf, or Expo, respectively. These distributions are repre-
sentative of actual workloads used in industrial pub/sub sys-
tems today [10, 11]. Stock market monitoring engines use
Expo for the study of stock popularity in the New York Stock
Exchange [30]. Zipf faithfully describes the feed popularity
distribution in RSS feeds [19].

Our publication workloads are uniformly random with re-
spect to the topics and all subscribers. We issue publication
messages iteratively. At each iteration, the system publishes
one message on some topic t ∈ T from an issuer node v ∈ V :
every topic t ∈ T possesses the same probability 1/|T |, and
all subscribers of t have the equal chance to be the issuer.

We evaluate three basic metrics: (a) the routing over-
head (see definition in §4), (b) TcoSuppR in Eq. (6), and
(c) the average path length across all messages, where the
path length of a message msg is the number of hops for msg
to travel from its source to the destination msg .low .

5.2 Impact of |V |

Fig. 2 depicts the comparison among GrSwico, Chord, and
RandomSW under Unif as |V | increases from 1 000 to 10 000,
where we fix |T | = 2000.

We look at the routing overhead. Fig. 2(a) plots the com-
parable ratios of the routing overheads for Protocol 3 on var-
ious small-world overlays. GrSwico consistently yields sub-
stantially less routing overhead: Chord and RandomSW exert
additionally 32% and 29% more pure forwarding messages,
respectively on average.

We look at the average path length. Fig. 2(b) shows
that GrSwico exhibits remarkably better scalability than ei-
ther Chord or RandomSW. First, the average path lengths of
both Chord and RandomSW are more than 3.3 times that of
GrSwico, on average. Second, the margins between GrSwico

and other two overlays become even wider when the work-
loads scale up. The average path lengths of all are enlarging
with the number of nodes. However, GrSwico grows at a
steadily slow pace, while Chord and RandomSW increase al-
most linearly as the node set V expands. At |V | = 10 000,
the average path lengths of GrSwico, Chord, and RandomSW

are 24.7, 112, and 107, respectively.
We look at the TCO support ratio. In Fig. 2(c), GrSwico

achieves significantly higher TcoSuppR: GrSwico is 75.3%,
and Chord and RandomSW are around 11.6%, on average.
Besides, this benefit becomes more profound as the node set
grows: the TcoSuppR of GrSwico increases with the number
of nodes, while those of Chord and RandomSW stay con-
sistently low. The root cause lies in the subscription cor-
relation among all nodes: increasing the number of nodes
enriches the correlation. GrSwico appreciates this upgraded
correlation, because each node has a better chance to find
small-world fingers with larger interest overlaps; meanwhile,
Chord and RandomSW disregard the correlation and thus
gain none improvement.

5.3 Impact of |T |

Fig. 3 shows how GrSwico, Chord, and RandomSW perform
with |T | under Unif. In this setting, |V | = 1023, and |T |
varies from 1 000 to 10 000.

Fig. 3(a) plots relative ratios of the routing overheads
on Chord and RandomSW as compared to that on GrSwico.
GrSwico significantly outperforms both baselines: Chord and
RandomSW impose 37.1% and 33.5% more pure forward-
ing messages than GrSwico, respectively on average. This
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Figure 3: GrSwico versus Chord versus RandomSW wrt. |T |

performance advantage is increasing as the input instance
scales up with the number of topics. As |T | = 10 000, the
additional amount of pure forwarding messages is 44.5% for
Chord and 39.3% for RandomSW.
Fig. 3(b) depicts the average path lengths for different

small-world overlays. GrSwico takes only about 60% of the
average path lengths of others: GrSwico is 7.8 hops, while
Chord and RandomSW are over 13 hops, on average. It is
worth mentioning that the gaps between GrSwico and the
other two shrink as the number of topics increases. GrSwico
gains benefits over others by exploiting the correlation em-
bedded in the subscriptions of all nodes, and this correla-
tion is diminishing as a result of enlarging the topic set.
We believe that, as |T | → ∞, these three curves will con-
verge to the same value, log |V |. In this extreme case, nodes
share virtually none common interest, and all small-world
networks are equivalent in the sense that zero interest close-
ness is captured; each pub/sub message dissemination in-
volves exactly one small-world routing from the source to a
singleton destination, so the expected path length is around
log |V | hops.
We further explain the marginal advantages of GrSwico

against ordinary small-world networks by looking at the
TCO support ratios in different overlays. As Fig. 3(c) shows,
TcoSuppR of GrSwico is considerably better than others:
GrSwico achieves up to 44%, and both Chord and RandomSW

are merely around 6%, on average. Higher TCO support
indicates better chances to have matched fingers for dissem-
inating publication messages. As a result, the messages rely
on fewer intermediate pure relays to move from the original
issuer to the subscribers.

6. CONCLUSIONS
This work demonstrates the importance and benefits of

integrating routing protocols with overlay topologies for dis-
tributed pub/sub systems. Furthermore, it is still of great
potential to improve the qualities of the small-world and
interest-close overlays, which provides us a solid guidance
and a promising direction for future work.
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