Caching in Video CDNs: Building Strong Lines of Defense

Kianoosh Mokhtarian and Hans-Arno Jacobsen

Middleware Systems Research Group
Department of Electrical and Computer Engineering, University of Toronto, Canada

kianoosh@msrg.utoronto.ca, jacobsen@eecg.toronto.edu

Abstract

Planet-scale video Content Delivery Networks (CDNs) de-
liver a significant fraction of the entire Internet traffic. Ef-
fective caching at the edge is vital for the feasibility of these
CDNs, which can otherwise incur significant monetary costs
and resource overloads in the Internet.

We analyze the challenges and requirements for video
caching on these CDNs which cannot be addressed by stan-
dard solutions. We develop multiple algorithms for caching
in these CDNs: (i) An LRU-based baseline solution to ad-
dress the requirements, (ii) an intelligent ingress-efficient
algorithm, (iii) an offline cache aware of future requests
(greedy) to estimate the maximum caching efficiency we can
expect from any online algorithm, and (iv) an optimal offline
cache (for limited scales). We use anonymized actual data
from a large-scale, global CDN to evaluate the algorithms
and draw conclusions on their suitability for different set-
tings.

Categories and Subject Descriptors C.2 [Computer Sys-
tems Organization]: Computer-Communication Networks

General Terms Performance

Keywords Content delivery networks, video caching

1. Introduction

A significant fraction of today’s Internet traffic consists of
video streams served by major providers such as YouTube,
Netflix and Amazon. This massive traffic is usually deliv-
ered to users through a Content Delivery Network (CDN)—
a network of geographically distributed cache servers. For
example, YouTube alone is estimated to serve 15-35% of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

EuroSys 2014, April 13-16, 2014, Amsterdam, Netherlands

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2704-6/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592798.2592817

the entire Internet traffic during peak hours across different
continents [23].

Delivering such substantial (and growing) volume of traf-
fic can incur significant monetary costs for CDN operators
and ISPs, if it is not properly handled at the edge. Unlike the
delivery of small-size, latency-sensitive content such as Web
search and email, the main goals for delivering bulky video
traffic at such scale are to avoid high traffic handling costs
and overload on bottlenecks; in terms of latency, it is often
just enough if the server-to-user RTT is maintained within a
reasonable bound compared to the required initial buffering
of the video. Video CDNss try to serve as much traffic as pos-
sible at the edge, to make the service economically feasible
and prevent such huge volume from harming the rest of the
Internet. However, the success in achieving these goals de-
pends largely on how effective the servers of the CDN can
cache content locally and serve as a line of defense against
the massive traffic.

In small CDNs consisting of a handful of server locations,
it is feasible (and more reasonable) to manage content cen-
trally, i.e., deciding how to host the files over the servers
and update them dynamically with the demand [2, 6, 25].
This is not the case in large CDNs which host an exten-
sive and dynamic set of files with transient demand patterns.
These CDNs include a large number of servers all around
the globe [12, 16] and host an increasingly large catalog of
videos, e.g., over 100,000 hours of video are uploaded to
YouTube every day [1]. Therefore, content management at
file level is offloaded to the individual cache servers based on
the request traffic they each receive, rather than being man-
aged centrally, where this traffic is mapped to the servers pri-
marily based on costs, constraints and delay bounds. Once a
proper mapping is established, the efficiency of a CDN is pri-
marily a matter of how well the individual servers can man-
age their cached contents: To serve as many of the incom-
ing requests as possible. In other words, each server is ex-
pected to maintain a dynamic collection of popular content
while both incurring as little cache-fill traffic as possible and
redirecting minimal requests to other (less preferred) CDN
servers for that user IP. However, determining when to bring
in new content upon cache misses or to redirect requests,
keeping both ingress (cache-fill) and redirected traffic low,

and being able to manage the tradeoff between the two based
on the server’s configuration, place new challenges before
these servers which cannot be addressed by existing solu-
tions in the literature (Section 2).

In this paper, we take a closer look at the operations of
individual cache servers in a video CDN for managing their
contents and minimizing the ingress and redirected traffic.
This is critical for a planet-scale CDN given the several-Tbps
volume of traffic: Pushing the efficiency of caches by every
1% saves significant traffic'.

The contributions of our work are as follows.

1. We identify a number of key challenges for video caching
in a planet scale CDN and analyze a baseline solution
built on LRU policies.

2. We develop a cache management algorithm that care-
fully adjusts ingress and redirected traffic and increases
cache efficiency by over 12% particularly for ingress-
constrained servers.

3. We formulate the offline caching problem where the cache
is aware of future requests, and we solve it using a greedy
algorithm as well as linear programming relaxation (for
small scales). These algorithms enable sound analysis of
online caching algorithms by providing an estimate of
the maximum caching efficiency we can expect from any
online algorithm, i.e., with perfect prediction of access
patterns.

4. We use actual data from a large-scale, global video CDN
to evaluate the algorithms based on traces from several
servers across different continents.

This paper is organized as follows. Section 2 discusses
the system model and the requirements specific to our video
CDN caching problem. We review related work in Section 3.
A detailed description of the video caching problem is given
in Section 4. Sections 5 through 8 present the four caching
algorithms described above, followed by detailed experi-
mental results in Section 9. Section 10 presents concluding
remarks and the related open problems for future work.

2. System Model and Practical Challenges

We describe our target CDN model and the related chal-
lenges for video caching in this section.

The primary goals of a CDN delivering a significant frac-
tion of the entire Internet traffic is to reduce cost and over-
load on link/server bottlenecks. For example, to serve a given
user IP, usually only a few server locations are preferred,
such as a remote server in the user’s ISP [12, 16] or one be-
hind a settlement-free peering connection between the CDN
network and the user’s ISP. Therefore, mapping users to
servers based on metrics unaware of such considerations,

! While one might presume the cheap cost of adding disk storage as a perfect
solution to this problem, the Zipfian pattern observed for video accesses
shows that just a few percent of higher cache efficiency requires up to a
multi-fold increase in disk size, even assuming the data does not grow.

such as through a content hash [9, 15], is not feasible. More-
over, given the thousands of server locations and billions of
video files which are dynamically updated on the servers, it
is not reasonable to make (logically) centralized decisions
for placing the files on the CDN servers. We also do not
require that availability and per-location popularity of the
individual files, which have no strong correlation with the
global popularity [28], are tracked in a centralized directory
for mapping requests to servers?.

Rather, in our considered CDN, user IPs are mapped
to servers primarily based on cost, constraints and delay
bounds. Then, the servers manage their own cache contents
based on the request traffic they receive—similar to the non-
cooperative pull-based model in the literature [18, 19]. In
this network of cache servers, instead of bringing in and
caching all requested video files, a server may simply redi-
rect a small fraction of requests (for unpopular videos) to
other servers possibly having the file or willing to fetch and
cache it. This way, each server will eventually host the files
that are most popular among the users it serves. Note that it
is not cost effective for the server to act as a proxy instead,
since that will just use up two servers’ resources rather than
simply redirecting the user to the other server. Compared to
the complex/nonscalable methods for arranging files on the
servers, repeatedly exchanging server cache indices, or cen-
trally tracking per-server files (all to enforce that requests
get the files always at their first point of landing), offloading
content management to the individual servers and allowing a
small fraction of requests to be redirected would simply suf-
fice. This enables the valuable advantages of simplicity and
easy scalability which are vital for a planet-wide CDN.

If redirecting a request, the destination server is selected
similarly to the way the initial server for each request is
selected: according to a mapping of worldwide user net-
works (IP prefixes) to server locations®. For instance, one
can employ a secondary map which defines the destination
of redirected requests from each user network. One exam-
ple of an alternative (secondary) server location is a higher
level, larger serving site in a cache hierarchy, which captures
redirects of its downstream servers besides possibly serving
some user networks of its own. Alternatively, the location to
redirect to can be one which also peers with the user net-
work(s) that the initial location serves. In all cases, note that
selecting the server location to redirect to, similar to select-

2 Note that this is different from bucketizing the large space of file IDs (e.g.,
using hash-mod) and taking the bucket IDs into account for mapping. The
latter is a feasible (and recommended) practice for dividing the file ID space
over co-located servers to balance load and minimize co-located duplicates.
The elements of this coarse grained set are aggregated file ID groups
comprising files of diverse popularities, which cannot serve as atomic units
stored in their entirety on one server and removed from another.

3The detailed schemes for mapping users to servers is beyond the scope
of this paper. As discussed in Section 1, this mapping is primarily based
on traffic constraints and costs, that is, the (estimated) demand of user
networks, server capacities, constraints of the involved paths (e.g., some
given peering capacity), delay bounds and so on.

ing the initial server for the request, is independent of the
individual files requested.

We focus on the operations of the individual cache
servers, the key building block for creating an efficient CDN.
Historically, caching techniques have been employed in a
wide range of computing applications such as Web proxies,
databases, operating systems and CPU caches. The com-
mon operation of these caches is as follows: Upon a re-
quest for an object not in the cache, fetch it from the back-
end and store it based on a cache replacement algorithm.
Some well known algorithms are to evict the object that is
Least-Recently Used (LRU), Least-Frequently Used (LFU),
or even Most-Recently Used (MRU) [20].

In the CDN we study, there are new challenges that can-
not be addressed by standard caching solutions. These chal-
lenges are as follows.

Cache fill and redirect. Offloading content placement
decisions to individual servers enables a flexible, horizon-
tally scalable CDN, where a server may fetch and cache the
requested file upon a cache miss, or simply redirect the re-
quest. There is an inherent tradeoff between ingress and redi-
rected traffic: Limiting ingress will start to increase redirects
and the other way around. It is therefore not only about the
cache replacement problem anymore: It is about deciding be-
tween cache fill and redirection for each cache-miss, keeping
both quantities low, and being able to manage the tradeoff
between the two.

Different cache-fill and redirection preferences. The
underlying connections across a worldwide CDN may in-
clude CDN-owned or leased links. Moreover, the connec-
tion of the CDN network to the rest of the Internet may be
through peering or transit connections with different traf-
fic handling costs for ISPs and CDNs. Therefore, the CDN
servers can have uplinks with diverse constraints for cache-
filling data. In addition, an important parameter for the will-
ingness of a server to cache-fill is the utilization of its egress
(serving) capacity. For a server at which the current contents
suffice to serve as many of the requests as can fully utilize
the egress capacity, there is no point to bring in new con-
tent upon cache misses. This is because still the same vol-
ume of requests will be served and redirected, hence wasted
(and possibly harmful) ingress. Furthermore, sometimes the
server’s ingress traffic and the consequent disk writes can
overload the disks and harm the read operations for cache-hit
requests. We have observed that in this case, for every extra
write-block operation we lose 1.2—1.3 reads. This becomes
particularly a problem for servers that have smaller disks or
are serving a more diverse request profile, both resulting in
more cache misses and potential cache fill.

Thus, the CDN servers can have different ingress capa-
bilities for cache-filling data. While some servers may not
be constrained and be able to cache-fill normally, some oth-
ers would prefer to redirect away a good fraction of cache
misses rather than cache-filling them, specially if there are

appropriate alternative locations not as constrained. That is,
different operating points in the tradeoff between cache-fill
and redirection percentage, while all yielding “the same byte
hit rate”, can translate into diverse consequences depending
on the server. Therefore, the individual servers’ ability and
willingness to cache-fill (i.e., the CDN’s preference at that
server) is an important factor that needs to be properly taken
into account in caching decisions.

Diverse intra-file popularities. The access patterns of
the different parts of a video file are usually different. The
first segments of the video often receive the highest num-
ber of hits compared to the rest [11]. It is thus not efficient
to cache-fill or evict video files in their entirety. The con-
sequent partial caching introduces new challenges for deter-
mining whether to cache-fill or redirect a request where the
requested file has some parts present and some missing in
the cache.

3. Related Work

Caching content on a network of servers has been considered
in various forms in the literature. Cooperative Web caching
techniques have been studied extensively, a comprehensive
survey of which can be found in [21]. For the specific case of
content delivery networks, different methods for caching and
serving content to users have been proposed [19]. For exam-
ple, the cache servers may exchange digests of the content
they hold [22], report their (frequently updated) contents to a
centralized directory [10], or be selected to serve users (par-
tially) based on content hashes [8, 9, 15]. These techniques
can optimize metrics such as the first-byte latency, but they
are not suitable for our considered scale and request map-
ping concerns, as discussed in detail in Section 2.

The content placement problem across a CDN has be-
come an interesting topic of research studied in [2, 4, 6, 25]
among others. These approaches depend on global knowl-
edge of the popularity and availability of files across the
CDN server locations. Techniques for mapping users to
CDN locations are investigated in [14, 26, 27]. Some of
the prior approaches assume the requested files are always
available (or are cache-filled) at the selected server [14, 27].
Wendell et al. present a general content-independent map-
ping algorithm based on specified policies [26]—an orthog-
onal work to ours which can benefit from the CDN model
we consider.

The cache management problem has been analyzed ex-
tensively in the literature [20]. Belady’s algorithm for off-
line caching evicts the object requested farthest in the future
as the optimal cache replacement solution [5]. For online
caching, LRU is known as the most popular replacement pol-
icy used in Web caches, for its simplicity and effectiveness
given the temporal locality of access patterns [3, 7]. Variants
of LRU, such as the Greedy Dual Size (GDS) [7] and GDS-
Popularity [13] algorithms have been proposed to make it
more sensitive to factors such as object size variability. We

deal with fixed-size chunks as described in the next section;
also when bringing in a chunk range as a whole, the size
is not a concern as it is the byte hit rate that matters. Other
LRU variants try to incorporate access frequency informa-
tion such as the LRU-K [17] and LNC-W3 [24] algorithms.
Our workload demonstrates a long, heavy tail in the access
frequency curve of the files. Putting the popular, frequently
requested files aside which automatically stay on the caches,
the files on the borderline of caching, i.e., those brought into
or evicted from the cache, fall on this tail and usually have
very few accesses in their lifetime in the cache. More impor-
tantly, earlier works address the classic problem of cache re-
placement, whereas in our case, it is about deciding between
cache replacement and redirection and being able to man-
age the consequent tradeoff between ingress and redirected
traffic based on the server’s preference.

4. The Video CDN Caching Problem

We formally define our video caching problems in this sec-
tion. Let R denote a request arriving at the server, which may
be received from a user or from another (downstream) server
for a cache fill. The request contains video ID R.v and byte
range [R.bg, R.b;]. We also define a timestamp R.t set to the
request’s arrival. The server may serve the request or redirect
it to another server (HTTP 302) as described. Although the
server may store files partially, it needs to either fully serve
or fully redirect a requested byte range, i.e., clients do not
download a single byte range from multiple servers, though
they may request different ranges at their own choice from
different servers.

To simplify the support for partial caching, we can di-
vide the disk and the files into small chunks of fixed size
K bytes (e.g., 2 MB). Doing so eliminates the inefficiencies
of allocating/de-allocating disk blocks to segments of ar-
bitrary sizes. Rather, we deal with units of data uniquely
identified with a video ID v and chunk number c. The
chunk range for request R can be denoted as [R.co, R.c1]
= [|Rbo/K |, [Rb1 /K],

4.1 Ingress-vs-redirect Tradeoff

To incorporate the factors discussed in Section 2, namely
the tradeoff between ingress and redirect ratios as well as the
server’s preference between the two, we define a cost C' for
every cache-filled byte and a cost C'r for every redirected
byte (Cr,Cr > 0). We also denote their ratio by app =
Cr/Cg. It is in fact this ratio that eventually matters rather
than C'r and C'r which are normalized as Cr + Cr = 2
(see Eq. (4)). Note that Cr and C'y are not actual monetary
costs to be quantified. They are simply modeling variables
whose relative value to each other, apr = Cr/CRp, is the
controlling parameter that captures the CDN’s preference at
that server and defines the server’s operating point (e.g., see
Figure 5).

At some server locations, it is preferred that the servers
ingress less traffic while a controlled increase in redirections
is acceptable and harmless. An example of this case is the
server locations that have saturated egress most of the time.
The servers at these locations will serve the same amount of
traffic and redirect the same whether cache-filling normally
(ap2r = 1) or conservatively (e.g., apr = 2), hence wasted
ingress. Furthermore, the server may be disk-constrained,
where too much ingress and the consequent disk writes nega-
tively impact regular disk reads as discussed earlier. Another
example for conservative ingress is a location whose cache-
fill traffic traverses the CDN’s backbone network possibly
shared with other services, and can overload it if ingress-
ing too much. On the other hand, the alternative location to
which it normally redirects (without traversing CDN back-
bone) is not as constrained, such as a location with a larger
set of racks and disks, i.e., a deeper cache and less need for
ingress, or a location closer to its cache-fill origin. In all the
above cases, apg > 1 indicates that the server should limit
its ingress: Fetch new content only when the new file is suffi-
ciently more popular than the least popular file in the cache.
The different operating points of a server based on the value
of apg are analyzed in Section 9.

Alternatively, at some server locations, ingress and redi-
rection make no difference and there is no gain in favoring
one over another. The most common example of this case is
a remote downstream server located in the same network as
the user [12, 16], from which any alternative location to redi-
rect to or cache-fill from has exactly the same network cost
and delay as from the user. aor = 1 expresses this configu-
ration for our algorithms. Finally, apr < 1 (e.g., 0.5-0.75)
indicates non-constrained/cheap ingress, such as an under-
utilized server with spare uplink capacity.

Note that in this work, our focus is not on detailed opti-
mization of apor values across the CDN caches. Rather, we
focus on the key building block for CDN caching, which is
an optimized underlying cache algorithm that complies to
the desired fill-to-redirect ratio (v p2) for each server. Given
such a cache with defined behavior, the CDN will have the
means for further (global) optimization. While this is an
orthogonal problem to the present work described in Sec-
tion 10, we also note that this is not an over-complicated
task in our current considered CDN: The common prefer-
ence for servers is apr = 1, while a fraction of servers
are constrained as explained above and can readily benefit
from agpp > 1—a default value of 2. Relieving these servers
through optimized reduction and adjustment of ingress and
redirected traffic is one of the main motivations for our
present work.

4.2 Cache Efficiency

Given Cr and Cg, the cost for serving request R by fetching
its full byte range equals (R.cy — R.co + 1) x K x Cp.
The cost of redirecting this request to be served from an
alternative server equals (R.by — R.by + 1) x Cg for the

CDN and the cost of serving it directly from the cache is 0;
there is indeed the cost of space and power for handling and
serving each request, which is small and nearly the same for
the three decisions, thus normalized as zero in the model.
Note the different use of R.b and R.c in the above costs
since a chunk is fetched and stored in full even if requested
partially. We can quantify the total cost of a cache server as
follows.

Total cost = num ingress bytes X Cp +

num redirected bytes x Cg. (1)

We note that a simple cache hit rate value can no longer
represent the efficiency of a cache, since the cache may sim-
ply redirect every request that has missing chunks and obtain
a hit rate of 100%. The redirection percentage alone is not
a sufficient metric either: Imagine cache-filling all misses.
For the special case of equal cache-fill and redirection cost
(apr = 1), we can define the efficiency of a cache server
as the ratio of requested bytes that were served directly from
the cache, not cache-filled or redirected—imagine Eq. (2)
with Crp = Cgk = 1. For the general case with arbitrary
apr, we can define cache efficiency as follows based on
the server’s cache hits, fills and redirections with their corre-
sponding costs.

Bytes served by cache-filling

Cache effici =1-
ache elficiency Total requested bytes F
Redirected bytes
- C 2
Total requested bytes * R @
Cr+Cgr=2. 3)

Clearly, maximizing the cache efficiency metric defined
in Eq. (2) is equivalent to minimizing the cache’s total cost
in Eq. (1). Moreover, because it is only the relative value
of C'r and C§ to each other (ag) that matters for caching
decisions, we can simply enforce Cr + Cr = 2 in Eq. (3)
to normalize. The constant 2 comes from the case with
apr = 1 where cache efficiency simply equals the fraction
of requested bytes that were served directly from the cache
(Cr = Cr = 1in Eq. (2)). The cache efficiency metric
defined in Eq. (2) takes a value in [—1, 1]*. The value of C
and C'r used in our algorithms can be obtained from ag
and Eq. (3) as follows.

2aF2R . o 2
_OfFZRﬁLl7 _05F2R+1.

4.3 Problem Definition

Our video caching problems can be defined as follows.

“4)

4 While a negative cache efficiency is not intuitive, we can imagine a server
that is missing all requested files and is cache-filling them all—no cache
hit and no redirection. This server would be performing more poorly when
ingress is costlier than redirect (a negative cache efficiency) compared to
when Crp = Cgr = 1 (zero cache efficiency). We do not normalize the
efficiency to [0, 1] to better highlight the differences.

LRU-based Video Cache

HandleRequest(R)

/I The case for warmup phase (disk not full) not shown.
1. t =VideoPopularityTracker.LastAccessTime(R.v)

2. VideoPopularityTracker.Update(R.v, t,)

3.if t == NULL or t,,,, — t > DiskCache.CacheAge()
4. return REDIRECT

5. S = DiskCache.Missing Chunks([R.cg, R.c1])

6

7

8

. DiskCache.EvictOldest(S.Size())
. DiskCache.Fill(S)
. return SERVE

Figure 1. Video cache with LRU-based popularity tracking
and replacement.

Problem 1 (Online Cache). Given the sequence of past
requests Ry, ..., R;_1, a disk size and the current contents
of the disk, make one of the following decisions for request
R; such that cache efficiency (Eq. (2)) over all requests is
maximized: (1) serve the request and cache fill any missing
chunks, or (2) redirect the request. For (1), also determine
the chunks to be evicted from disk.

Problem 2 (Offline Cache). Given the full sequence of re-
quests Ry, ..., R, and a disk size, make one of the decisions
as in Problem 1 for each R; such that cache efficiency over
all requests is maximized.

The next four section describe our proposed video caching
algorithms.

5. xLRU Cache for Video CDNs

LRU is the most popular replacement policy used in Web
caches due to temporal locality, which is based on scoring
objects by their last access time [3, 7]. The least recently
used object is treated as the least popular one to be evicted
to make room for new data. For the video caching problem,
there is an additional option of not serving a request if the
file is not popular enough to be cached at all.

Therefore, a video cache based on two LRU queues can
operate as follows (Figure 1). First, a disk cache stores par-
tial video files as chunks with an LRU replacement policy.
To minimize ingress traffic and avoid too many redirects
at the same time, it is best for the server to keep only the
most popular videos (from the server’s perspective). Hence,
a video popularity tracker on top of the disk cache tracks
the popularity of each video file as its last access time—how
recently a chunk of the file was requested. The popularity
tracking algorithm shares similarities with the LRU-2 algo-
rithm [17]: If there is no previous request for the file, i.e.,
first time seeing a request for the file, the video fails the pop-
ularity test and is redirected. The same result will be returned
if the age of the last request for the video is older than the
age of the oldest chunk on disk, also known as the cache age.

Otherwise, the request is sent to the disk cache for serving,
including the cache-fill of any missing chunks.

The disk cache and the popularity tracker can both be im-
plemented using the same data structure, which consists of
a linked list maintaining access times in sorted order, and a
hash map that maps keys to list entries. These keys are video
IDs in the popularity tracker, and video ID plus chunk num-
ber in the disk cache. This enables O(1) lookup of access
time, retrieval of cache age, removal of the oldest entries,
and insertion of entries at list head. Note that insertion of a
video ID with an arbitrary access times smaller than list head
is not possible. Historic data that will not be useful anymore
according to the cache age is regularly cleaned up.

We enable dynamic adjustment between cache fill and
redirection according to agppg, resulting in what we call
xLRU Cache, by enhancing the popularity test as follows.
In Figure 1 Line 3, the popularity of a video is modeled with
an approximate Inter-Arrival Time (IAT) of the requests for
it, measured as IATg ,, = tp,y — t. Similarly, the popularity
of the least popular chunk on disk, which roughly estimates
the least popular video, is modeled by IATy = CacheAge.
However, if the cost of cache fill is, for instance, twice that
of redirection (amr = 2), we expect a video to be twice
as popular as the cache age, i.e., requested with a period
at most half the cache age, in order to qualify for cache fill.
Therefore, the redirection criteria in xLRU cache is designed
as follows.

(tnow — t) X apar > DiskCache.CacheAge(). 5)

This condition, if true, indicates that the requested video is
not considered popular enough for the given fill-vs-redirect
preference (ag2g) and should be redirected—in Line 3 of the
pseudocode, the second term of the “or” operator.

6. Cafe Cache for Video CDNs

We develop a new algorithm for video caching that is Chunk-
Aware and Fill-Efficient, hence called Cafe Cache’. In a
nutshell, Cafe Cache estimates the joint cost of the current
request as well as the expected future ones, when deciding
to serve or redirect a request. This enables an accurate com-
pliance of the resultant ingress and redirected traffic with
the desired level defined by a k. Moreover, in Cafe Cache,
the popularity of a video is tracked based on its individual
chunks. Thus, it takes into account the intra-file diversity of
chunk access patterns, and it can estimate a popularity for
some chunks not previously seen, as it is necessary for scor-
ing some requested chunk ranges. In addition, Cafe Cache
tracks popularity as a gradually updated inter-arrival time,
which prevents unpopular videos from staying for long (pol-
luting) the cache.

5 The highlight of Cafe’s chunk-awareness is in its computation of redirec-
tion/serving utilities for making cache admission decisions. This is not to
be mistaken by chunk-level caching (i.e., not bringing in whole files unnec-
essarily) which is done by both Cafe and xXLRU.

In the following, we first present the high level operation
of Cafe Cache’s request admission algorithm, followed by
a description of the underlying details: Inter-arrival times,
their implications for ordering the videos and chunks, and
the consequent data structures employed by Cafe Cache.

Unlike xXLRU Cache where popularity tracking and re-
quest admission is done at file level while disk cache is man-
aged separately at chunk level, these two tasks are aggre-
gated in Cafe Cache. Given request R, Cafe Cache com-
putes the expected cost for serving and for redirecting the
request based on the individual chunks enclosed in R, and
serves/redirects the request accordingly: whichever incurs
a smaller cost. Let S denote the set of requested chunks
([R.co, R.c1]), S C S the set of requested chunks miss-
ing in the cache, and S” the set of old chunks to be evicted
should the missing chunks be brought into the cache (|S’| =
|S”]). The serving of request R incurs a twofold cost: (i)
the cost of cache-filling any missing chunks (S’), and (ii)
the expected cost of redirecting/cache-filling some requests
in the future—those for the chunks being evicted (S”). Al-
ternatively, if the requested chunks (S) are considered not
popular enough and get redirected, we incur the cost of redi-
recting the request right now and possibly in the future. This
can be formalized as follows.

E[Costyene(S)] = |8 x C +

2.

IAT,
xes//
E[Costredirect(S)] = |S| x Cr +

> x min{Cr,Cr}, (7)

€S’

X min{Cp7C’R} (6)

IAT,

where IAT, is the estimated inter-arrival time for chunk =
(described shortly), and 7" indicates how far in the future
we look into. That is, we estimate the number of requests
for a chunk in the near future through an imaginary window
of time during which we expect the inter-arrival times to be
valid—a measure of popularity dynamics and cache churn.
The cache age itself is a natural choice for the length of this
window, T', which has yielded highest efficiencies in our ex-
periments. Moreover, in Egs. (6) and (7) we have multiplied
the expected number of future requests by min{Cr, Cr}.
This is because we cannot be certain at the moment whether
we will cache fill or redirect those chunks—most likely
whichever incurs a lower cost, hence the min operator. C'r
and C'g in Egs. (6) and (7) are given based on Eq. (4).
Inter-arrival times in Cafe Cache are tracked as exponen-
tially weighted moving average (EWMA) values. This en-
ables Cafe to have IATs responsive to the dynamics of ac-
cess patterns yet resistant to transient access changes. For
each chunk =z, the server tracks the previous IAT value, dt,,
and the last access time, ¢,,. On a new request for = at time

t, these values are updated as follows.

dty, v ({t—ts)+ (1 —7)dt,
te <t

Then, the TAT of x at any time ¢’ can be obtained as:
IAT, (') =~ (t' — t;) + (1 —) dt,. 3)

Cafe Cache needs to maintain the chunks in a data struc-
ture ordered by IAT values, similarly to the xLRU Cache,
though with an added flexibility which is discussed shortly.
In this data structure, a chunk gradually moves down and ap-
proaches eviction unless if a new request arrives and moves
it up. Upon such request at time ¢, the chunk is (re-)inserted
in the data structure with key key, (¢). In XLRU Cache, a
value of key, (t) = t, where t, is the last access time for x
would simply satisfy the ordering requirement: Chunk x is
placed lower than chunk y iff AT, (t) > IAT,(t) for any t.
Recall that in XLRU, IAT,.(t) =t — t,.

In Cafe Cache, we use a virtual timestamp defined as
follows as the chunk’s key for insertion at time .

key,(t) =t —IAT,(t) =t —v (t —tz) — (L —) dtz. (9)

However, unlike XLRU where key,(t) = t, is a time-
invariant value, it is not in Cafe Cache. This means that
if key,(t) < key,(t) at insertion time ¢, we need to make
sure the same order holds at a later lookup time ¢’. This is
guaranteed through the following theorem.

Theorem 1. By keying data items x and y with any arbi-
trary, fixed timestamp Ty as key,(Ty) = Ty — IAT,,(Ty) and
key,(To) = To — IAT,(Tv), for any timestamp t we have
key, (t) < key,(t) iff key,(To) < key,(To).

The proof is not too complex and is therefore omitted; it
is based on the linear form of Eq. (9).

Based on these keys which can order the chunks with
respect to their popularities (i.e., IAT values), Cafe Cache
maintains chunks in a data structure that enables the follow-
ing operations: Insert a chunk with the aforementioned vir-
tual timestamp key,, (T); look up the IAT of a chunk; and re-
trieve/remove the least popular chunks—entries with small-
est keys. Note that in Cafe Cache, the chunks are not always
inserted with a key higher than all existing keys, unlike the
case for xXLRU Cache where key, (t) = t,. Rather, a chunk
gradually moves up this set according to its EWMA-ed IAT
value. Therefore, as a data structure that enables such in-
sertions, we employ a binary tree maintaining the chunks in
ascending order of their keys, as well as a hash map to en-
able fast lookup of IAT values by chunk ID. In other words,
we replace the linked list in XLRU Cache with a binary tree
set. This enables the desired flexibility in insertions, with an
insertion/deletion time of O(log) and lookup/retrieval of
least popular chunks in O(1).

Finally, we have devised a further optimization for the
efficiency of Cafe Cache: We would like to have an IAT

estimate for chunks that are not ever seen before, but belong
to a video from which some chunks exist in the cache. Thus,
we separately maintain the set of chunks cached from each
file, indexed by file ID. The IAT of an unvisited chunk from
video file v is estimated as the largest recorded IAT among
the existing chunks of v.

7. Optimal Cache (Offline)

Even with perfect popularity prediction and caching, the
efficiency of a cache in a dynamic CDN can be enhanced
up to a certain point. Having an estimate of this maximum is
critical for understanding and improving caching algorithms.
In other words, this estimates how much of the inefficiency
to blame on the caching algorithms and how much on the
nature of the data. We design offline caching algorithms that
assume the knowledge of the complete sequence of requests.
We first formalize this problem as an Integer Programming
(IP) problem and try to find the maximum possible cache
efficiency through Linear Programming (LP) relaxation of
the IP problem. While a computationally complex solution
applicable to limited scales, this algorithm provides insights
on where our greedy offline algorithm stands.

Lett (1 <t < T) where T is the size of the request
sequence denote discretized time such that ¢ = ¢ refers to
when the ¢-th request of the sequence (R;) arrives. Also let
J denote the total number of unique video chunks present
in the sequence, and 7 (1 < j < J) the j-th unique {video
ID, chunk number}. The requests can be represented with
a J x T matrix {m;} (m;, € {0,1}) where m;; = 1
iff request R; includes the j-th unique chunk. Similarly, we
define the binary matrix {z; .} to hold the result: z;; = 1
iff the j-th unique chunk should be in the cache at time {.
A secondary result variable is defined as {a:} where a; €
{0,1} (1 < ¢ < T) indicates whether R; should be served
(a; = 1) or redirected (a; = 0). The optimal video caching
problem can be defined as follows.

J T
min ZZ |zt — j1-1]/2 x Cp+

j=1t=1
T
D (1 —ay) x Cr xRy (10a)
t=1
st. oz, €{0,1} (¥, t) (10b)
a; € {0,1} (Vi) (10c)
Tjt > Qg (V],t S.t. mjt = 1) (IOd)
i < wjp—1 (Vi tst.m;, =0) (10e)
J
> wji < D (V1) (10f)
j=1

where z; o is defined as 0, | R; | denotes the size of request R
in number of chunks, and D.. is the total disk size in chunks.
Eq. (10a) states the total cost which is to be minimized.

The number of chunk fills is counted as |z;; — z;1—1]/2
since each fill comes with an eviction, both triggering a 1 in
|z;+ — x;+—1|; we can safely assume the cache is initially
filled with garbage. Constraint (10d) ensures that if a request
is admitted (a; = 1), all its chunks are present or are brought
into the cache. Constraint (10e) ensures no useless cache fill.
Although this will be taken care of by the objective function,
constraint (10e) helps speeding up the computations.

To get a pure linear formulation that can be fed to soft-
ware libraries, we introduce new variables y;; = |x;: —
xj,t,1| and rewrite the objective function (10a) as follows.

J T T
min » > y;/2xCr+ Y (1—ar) x Cr x| Ryle. (11)
t=1

j=1t=1

Moreover, the following new constraints are introduced that
ensure the consistency of y; ;. Note that the last constraint
(12c) is only to speed up the computations.

Yjt = Tht — Thi-1 (12a)
Yt = Thyt—1 — Thyt (12b)
yjr < 1. (12c)

Although there exist libraries for (heuristically) optimiz-
ing this IP problem, our primary goal with the above for-
mulation is finding a guaranteed, theoretical lower bound on
the achievable cost—equivalently, an upper bound on cache
efficiency (Section 4.2). We therefore solve an LP-relaxed
version of the optimal caching problem by loosening con-
straints (10b) and (10c) to allow non-integer values in [0, 1].
This provides a further lower bound on cost, below which
is not possible to reach by any caching algorithm. We as-
sess the tightness of this bound empirically by comparing
Optimal Cache and Psychic Cache in Section 9. Further the-
oretical analysis is an interesting problem left as future work
in a more theory oriented study.

8. Psychic Cache (Offline)

Given the large size of the data that we use in our experi-
ments, we need an offline cache with computation and mem-
ory requirements independent of the data scale. We design
Psychic Cache which is particularly efficient in speed and
memory. Psychic Cache handles a request by looking into
the next N requests for every chunk and it can operate as
fast as our online caches, xXLRU and Cafe, on the long se-
quence of requests.

Psychic cache does not track any past requests for the
chunks. It maintains a list L, of timestamps for chunk x
indicating its future requests. Also, |L,| is bounded by a
given N for efficiency, where N = 10 has proven sufficient
in our experiments—no gain with higher values.

Given request R, Psychic Cache computes the expected
cost of serving or redirecting the request similarly to Cafe
Cache, except for estimating the cost of potential future

redirections/cache-fills. Instead of using an inter-arrival time
computed from past requests for a chunk (Egs. (6) and (7)),
Psychic Cache computes this value directly from the future
requests themselves: it captures each request coming at time
t through an inter-arrival value of 1/(¢ — t,,,), which results
in a fast computable combination of how far in the future
and how frequent the chunk is requested.

E[Costserve (S)] =
T
IS’| x Cp + Z Z T % min{Cr,Cr} (13)
€S tEL, now
E[COStredirect(S)} =
T .
S| xCr+ > Y —— xmin{Cp, Cr}, (14)
mES/ tELm now

where S denotes the set of requested chunks, S’ C S the
missing ones, and S” (|]S”| = |S’|) the chunks to be poten-
tially evicted—those requested farthest in the future. Similar
to Cafe Cache, min{Cr, Cr} is considered as the cost of a
future redirection/fill (Egs. (6) and (7)). Also similarly, the
value of T', which represents for how long we rely on these
estimates, is set to the cache age. Note that cache age is com-
puted differently in Psychic Cache since there is no history
of past requests: It is tracked separately as the average time
that the evicted chunks have stayed in the cache.

9. Experimental Results

In this section, we present our experiments on real data from
a large-scale CDN. The data includes anonymized video re-
quest logs of six selected servers around the world: One in
Africa, Asia, Australia, Europe, and North and South Amer-
ica. These logs belong to a one month period in 2013. We
replay the logs of each server to the different algorithms and
measure the resultant ingress traffic, redirection ratio and the
overall cache efficiency as described in Section 4.2. When
reporting the average cache efficiency for an experiment, the
average over the second half of the month is taken to exclude
the initial cache warmup phase and ensure steadiness.

First, we evaluate the efficiency of Psychic Cache com-
pared to Optimal Cache in a limited scale. Then, we analyze
the performance of xLRU, Cafe and Psychic Caches for dif-
ferent setups. These setups include different server disk sizes
and different fill-to-redirect configurations. As elaborated in
Sections 2 and 3, we are not aware of any previous work ap-
plicable to our video caching problem that we can include in
our experiments.

9.1 Psychic: An Estimator of Maximum Expected
Efficiency

Recall that Psychic Cache which looks into future requests
is developed to estimate how well a cache would do assum-
ing perfect prediction of access patterns, i.e., video popular-
ities and temporal trends. On the other hand, Optimal Cache

incorporates the entire request sequence in an Integer Pro-
gramming (IP) formulation in which the achieved cost rep-
resents a theoretical minimum for any possible caching algo-
rithm. This minimum is further lower-bounded through LP-
relaxation of the IP problem, as described in Section 7.

Due to memory and computational intensity of Optimal
Cache, our experiments with this cache are conducted on a
limited sample of the data. While this limited experiment
is not as conclusive as our comprehensive experiments with
the other caches, it is primarily to provide an idea of where
the heuristic Psychic Cache stands as an indicator of the
maximum expected efficiency in the next experiments. The
data for this experiment is limited as follows. We use the
traces of a two day period, which we down-sample to contain
the requests for a representative subset of 100 distinct files—
selected uniformly from the list of files sorted by their hit
count during the two days. We also cap the file size to 20 MB
for this experiment. We select the disk size such that it can
store 5% of all requested chunks in the down-sampled data.

We run Optimal and Psychic Caches on this data, and
measure their achieved efficiency. We do not include xLRU
and Cafe Caches in this experiment since they operate ac-
cording to a history of past requests, hence unable to produce
reliable results in only a two day period; they are evaluated in
detail shortly. Psychic and Optimal cache, on the other hand,
do not require any history, and their first-hour outcome is as
good as the rest.

Figure 2(a) illustrates the efficiency of Psychic Cache
compared to the LP-relaxed upper bound obtained by Op-
timal Cache. We also plot the average, minimum and max-
imum delta efficiency between Psychic and Optimal across
all six servers through the error bars in Figure 2(b). This
figure shows that the cache efficiency achieved by Psychic
Cache is on average within 5-6% of the LP-relaxed bound.
Note that an exact optimal solution is also within a gap of
this theoretical bound as it is obtained through LP relaxation,
a nonzero gap as we have observed, though theoretical anal-
ysis of the tightness of this gap is left for a future study. In
the remainder of this section, we use Psychic Cache, our best
known offline algorithm for actual scale, as an indicator of
the highest cache efficiency expected from other (history-
based) algorithms—one that is equally efficient in speed and
memory with constant-size data maintained per video chunk,
but with psychic prediction of future accesses even for files
never seen before.

9.2 xLRU, Cafe and Psychic Performance

First, we take a close look in Figure 3 at the instantaneous
performance of the caches: The redirection ratio, the ingress
to egress percentage (i.e., the fraction of served traffic that
incurred cache-fill) denoted in the figures by “Ingress %,
and the overall cache efficiency as defined in Section 4.2.
This figure corresponds to our selected server in Europe,
given a disk size of 1 TB and apr = 2. Also, chunk size is 2
MB and v = 0.25 (Eq. (8)) in this and other experiments. In

[e]
(=]

___70r i

X | J

>

£% ’

g L J

g J

F 50

éé I LP-Relaxed Optimal
40¢ Cache (Upper Bound)]

[—@— Psychic Cache I

30 I I T

~H

0.5 1 2
Fill-to-redirect configuration (ap2r)

(a) Cache efficiencies averaged over the 6 servers.

155 —— [.P-Relaxed Optimal — Psychic Cache ‘ J

10 v J

Delta cache efficiency (%)

0 0.5 1 2

Fill-to-redirect configuration (apr2r)

~NE

(b) Average, minimum and maximum of delta cache efficiency: LP-
Relaxed Optimal minus Psychic Cache in Figure 2(a).

Figure 2. Performance of Psychic Cache compared to (LP-
relaxed) Optimal Cache.

Figure 3, we can observe a diurnal pattern in both ingress and
redirection for all caches, with their peak values occurring at
busy hours. Overall, while the three caches incur compara-
ble redirection rates with Cafe Cache being slightly higher,
there is a significant drop of the incoming cache-fill traffic
from xLRU to Cafe and Psychic, even though XxLRU tries
to admit only videos that are sufficiently more popular than
the current contents (Eq. (5)). In other words, Psychic and
Cafe caches perform more accurately in approving cache-fill
for the right content. Thus, Cafe Cache achieves an average
10.1% increase in cache efficiency compared to xLRU, and
the offline algorithm in Psychic achieves a 12.7% increase—
respectively 0.101 and 0.127 in Eq. (2).

Next, we analyze the efficiency of caches for different
apr configurations. Figure 4 plots the average efficiency
of the caches for this experiments on the European server
given 1 TB of disk. According to the figure, when ingress
is not so costly, the performance of Cafe and xXLRU Caches
are comparable. For example, for appg = 1, Cafe achieves
a cache efficiency of 61% which is about 2% higher than

\ - =-=-xLRU
30 ':; l — Cafe |
| L '] .
ol L, N - |:: t :) | == Psychic
5 r 1 T
[P “| ..| [TP .\| T
§ h‘ I'h:ll i r' |“ f,“'“ ..l‘ ! :
20 fl‘lllﬂlq “'I ||l||l Il l‘:"f L ‘l “" |l| A
7 hf 'llll”ll. fus “"" l"‘I ||}"'-“"n' ' ;. ulml |"' hit "\l. ,"Lu
' " “' AN >
[R B AR
]

60
! ' [.
50 i ' } ! i v ff A
Gty I 1w
g | i l [TR i b i i i
< 40 f&.l LREA T4 n M T RH |
© l;,h‘ll‘!:l ‘hl"‘ "!l'!:'iu B e " Y] ! 1l ,
2 ol YR 8 gy il g s R
y v F ' u i Y F ul -4 1 |
ch BRI R)t i 1
20 : E ‘if --=-xLR
bie —— Cafe
== Psychic
10 L L L L
0 5 10 15 20 25 30
Time (day)
(b) Redirected traffic.
90
—~ 80
=
-]
= 70
2 N
(]
3=
60
]
< [l
% i \
O 5o ‘a In---XLRU
iy
' | ——Cafe
== Psychic
40 L L L L
0 5 10 15 20 25 30
Time (day)

(c) Cache efficiency.

Figure 3. Ingress, redirection, and overall cache efficiency
over the 1-month period. Best viewed in color.

xLRU. On the contrary, when the server is constrained for
ingress, the efficiency of Cafe Cache approaches that of
Psychic, as it can reduce the ingress equally effectively and
hold a well selected set of popular files, hence incurring
only a small increase in redirections as depicted earlier in
Figure 3. For example, for agmr = 2, Cafe Cache achieves

90

r - - -l xLRU |
- -HCafe -
HIIIl Psychic

(0]
o

]
o

[o2]
o

Cache efficiency (%)

a
o

40 0.5 1 2 4

Fill-to-redirect cost ratio (Cr/CRr)

Figure 4. Efficiency of the algorithms for different ingress-
to-redirect configuration. Each group of 3 bars represents
xLRU, Cafe and Psychic from left to right.

=l-xLRU
40r ?p. . .“ -z- Cafe
L . : : =3~ Psychic ||
*x .. o
‘\ ~.~ ‘\
ASO’ . ~~~ T
= | ’k, .“~!;:~ |
+ ~ -~ 8
g . W,
5 20¢ S ’~.’ 1
Q ~
Q’-)i L. ‘§~ m
‘5
~
10f R .
~
-~
| > J
~§
0 Il Il Il Il * Il
0 5 10 15 20 25 30

Ingress (%)

Figure 5. Different operating points of each algorithm in
the tradeoff between cache fill and redirection, governed
by agg. The four operating points from left to right are
obtained by setting azg to 4, 2, 1 and 0.5, respectively.

an efficiency of 73%, close to the 75% of Psychic and 11%
higher than the 62% of xXLRU. From a cost-wise perspective,
compared to xLRU, Cafe reduces the inefficiency (which
translates into cost) from 38% to 27%, which is a relative
29% reduction. We also observe a considerable gap between
xLRU/Cafe and Psychic Cache for amr = 0.5, which is
because xLRU and Cafe will (intentionally) not bring in a
file of which no previous request is ever seen, while Psychic
does, based on future requests.

To further understand the tradeoff between cache fill and
redirection and the way ayr can be used to define the
operating point of each server in this tradeoff, we illustrate

o]
a1
T
L

(o]
o
T
i

]
(S}
T

N
&)
T

Cache efficiency (%)
\‘
=}

60L =—-xLRU i
—9—Cafe
551 =@—Psychic J
0.5 1 2 4

Disk size (TB)

Figure 6. Efficiency of the algorithms given different disk
capacities.

these points in Figure 5. This figure shows the ingress to
egress percentage for the algorithms on the horizontal axis,
and the redirection ratio on the vertical axis, for different
apr values and a disk size of 1 TB on the European server.
Data points from left to right correspond to apr = 4, 2,
1 and 0.5. The figure shows that as ingress becomes more
and more costly (going from right to left), all caches tend to
hold onto the data stored on their disks, and redirect more
requests instead. However, the ingress percentage can only
be reduced to 15% by xLRU even for apop = 4, while Cafe
and Psychic Caches closely comply with the given costs and
shrink the ingress to only a few percent. On the other hand,
for cheap ingress which is represented by the rightmost data
points, both xXLRU and Psychic suffer from high redirections
as observed and discussed in the previous experiment.

We also evaluate the performance of the caches for differ-
ent disk sizes, which is plotted in Figure 6—experimented
for the European server with agr = 2. As expected, effi-
ciencies increase by providing more disk. However, xXLRU
results in an increasing inefficiency as disk size becomes
limited, while Cafe maintains its small distance with the off-
line algorithm. This is because holding on to the right con-
tent on the disk and being accurate in approving cache fill
for new content, in which Psychic and Cafe caches are better
than xLRU, is more critical when the disk is more limited,
i.e., small cache age. In this experiment which models an
ingress-constrained server (app = 2), to achieve the same
efficiency xLRU requires 2 to 3 times larger disk space than
Cafe Cache. In the non-ingress-constrained case (g = 1),
xLRU requires only up to 33% larger disk.

While the results reported so far correspond to one server,
our experiments on the data from the other five servers
around the world have demonstrated closely similar pat-
terns. Figure 7 plots one of these results: Cache efficiency

100

- - - - fHIlxLRU
: - - - tCCafe
90l : : Al Psychic
— [
< !
> b
o 80 Loy
g v
< |
E |
[«V]
o 70 !
=1
[}
s
D)
60

Africa Asia Australia Europe N-Amr. S-Amr.

Figure 7. Efficiency of the algorithms on traces from six
servers around the world. Each group of 3 bars represents
xLRU, Cafe and Psychic from left to right.

of the different algorithms, on a 1 TB disk with agr = 2.
The same trend between the algorithms is observed across
all servers. In this figure, the different levels of efficiency
from server to server indicate different request profiles ob-
served by these servers, i.e., request volume and diversity
compared to the same 1 TB disk size given to all. For ex-
ample, the selected server in Asia is serving more limited
requests compared to the South American one, hence higher
efficiencies in Figure 7—similar to the trend in Figure 6.
Moreover, we notice a wider gap between xLRU and the
other two algorithms for busier servers such as the one in
South America, which confirms Psychic’s effectiveness in
particular for heavy-load, disk-constrained servers.

Summary. Our experiments with different server traces
and setups show that XLRU and Cafe Caches achieve com-
parable efficiencies (Cafe up to 2% higher) for cases where
ingress is not so costly: agg < 1. For agop > 1 which is the
common case of servers with constrained ingress, Cafe per-
forms with over 12% higher cache efficiencies, close to that
of Psychic Cache that is aware of future requests. Our exper-
iments also show that Cafe Cache performs with an increas-
ingly higher efficiency than xLRU as the disk size becomes
limited compared to the incoming request profile.

10. Conclusions

Efficient caching is crucial to the feasibility of a planet-scale
video CDN. We have studied the video caching problem
in such CDNs and analyzed its particular requirements in
detail. We developed a simple LRU-based solution to meet
these requirements (XLRU Cache), as well as a more in-
telligent solution specially for ingress-constrained servers
(Cafe Cache). Moreover, we studied the offline caching
problem assuming knowledge of future requests. We de-

signed a greedy algorithm based on this knowledge (Psychic
Cache) which heuristically estimates the maximum cache
efficiency we can expect from online algorithms, and an
LP-relaxed optimal algorithm for limited scales (Optimal
Cache). Using real data from a large-scale global CDN, we
evaluated the different algorithms and showed that while
xLRU can be good enough where cache ingress is not ex-
pensive, Cafe Cache performs with over 12% higher cache
efficiency for the common case of servers with ingress con-
straints, achieving an efficiency relatively close to the offline
Psychic algorithm.

There are a number of promising research directions that
we would like to explore as part of our future work. A num-
ber of these problems include CDN-wide optimality with
Cafe Cache, further optimality analysis for offline caching,
proactive caching for spare ingress, and policy-friendly, co-
operative cache management.

CDN-wide optimality with Cafe Cache. This work fo-
cuses on an optimized caching algorithm based on the given
ingress-to-redirect preference agog. As described in Sec-
tion 4.1, one of the main targets of our work is to relieve
ingress for constrained cache servers with proper alternative
locations; see the same section for assignment of appp val-
ues in our target CDN. Nevertheless, Cafe Cache with de-
fined behavior through ok (Figure 5) can as well be used
as the underlying building block to adjust traffic between
any group of constrained/non-constrained servers, which can
be done through finer tuning of apg for correlated servers.
Capturing different inter-server correlations and global op-
timization of a planet-scale CDN based on Cafe Cache is
an interesting problem for future research. We are currently
working on CDN-wide experiments with Cafe Cache to fur-
ther analyze this problem. Furthermore, dynamic adjustment
of apop, although not recommended in a wide range due to
the resultant cache pollution and cache churn, can be con-
sidered in a small range through a control loop for better
responsiveness to dynamics.

Optimal cache. We have not comprehensively addressed
the problem of optimal offline caching in this paper. An exact
optimal solution for actual scale, whether the proposed IP
formulation or a customized algorithm, and/or analysis of
the tightness of the LP-relaxed version can be a beneficial
future study.

Proactive caching. We have primarily targeted the prob-
lem of constrained ingress capabilities which exists for many
servers. For cheap/non-constrained ingress, on the other
hand, we still observe a gap between the efficiency of our
caches and the estimated maximum. Although the leading
cause of this gap is just requests for files never seen before
(Section 9), we are investigating how to take best advantage
of under-utilized ingress whenever possible, such as proac-
tive caching during early morning hours.

Policy-friendly, cooperative cache management. It is
not a (readily) efficient practice for our target CDN to sim-

ply distribute the content catalog over its server locations.
As discussed in Sections 2 and 3, this is due to the spe-
cific considerations for delivering the substantial video traf-
fic, the size of the network and content corpus, and the ob-
servation that there are usually only a few server locations
preferred for a given user, e.g., the CDN’s remote server
rack placed inside the user’s ISP [12, 16], and clearly not
one in another ISP network even if nearby. Scalable, coop-
erative/coordinated content management while taking into
account such important considerations of a large CDN is a
practical and beneficial future work.

Acknowledgments

The authors would like to thank Prof. Fabian E. Bustamante
and the anonymous reviewers of EuroSys’14 for enabling
important improvements to our paper.

This work was supported by an ORF grant under the
Connected Vehicles for Smart Transportation project.

References

[1] YouTube statistics. http://www.youtube.com/yt/press/
statistics.html.

[2] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman,
and H. Bhogan. Volley: automated data placement for geo-
distributed cloud services. In Proc. of NSDI’10.

[3] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira.
Characterizing reference locality in the WWW. In Proc. of
PDIS’96.

[4] S. Bakiras and T. Loukopoulos. Combining replica place-
ment and caching techniques in content distribution networks.
Computer Communications, 28(9):1062-1073, June 2005.

[5] L. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal, 5(2):78-101, June
1966.

[6] S. Borst, V. Gupta, and A. Walid. Distributed caching algo-
rithms for content distribution networks. In Proc. of IEEE
Infocom’10.

[7] P. Cao and S. Irani. Cost-aware WWW proxy caching algo-
rithms. In Proc. of USENIX USITS 97.

[8] D. Karger et al. Web caching with consistent hashing. Com-
puter Networks, 31(11-16):1203-1213, 1999.

[9] M. Freedman, E. Freudenthal, and D. Mazieres. Democratiz-
ing content publication with Coral. In Proc. of ACM/USENIX
NSDI’04.

[10] S. Gadde, M. Rabinovich, and J. Chase. Reduce, reuse, recy-
cle: An approach to building large Internet caches. In Proc. of
Workshop on Hot Topics in Operating Systems, pages 93-98,
April 1997.

[11] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube traffic
characterization: a view from the edge. In Proc. of ACM
IMC’07.

[12] Google, Inc. Google Global Cache program. https://
peering.google.com/about/ggc.html, 2013.

[13] S. Jin and A. Bestavros. Popularity-aware greedy dual-size
Web proxy caching algorithms. In Proc. of ICDCS’00.

[14] S. Narayana, J. Jiang, J. Rexford, and M. Chiang. To coordi-
nate or not to coordinate? Wide-area traffic management for
data centers. Technical Report, Princeton University, 2012.

[15] J. Ni and D. Tsang. Large scale cooperative caching and
application-level multicast in multimedia content delivery net-
works. IEEE Communications, 43(5):98-105, May 2005.

[16] E. Nygren, R. Sitaraman, and J. Sun. The Akamai network:
A platform for high-performance internet applications. ACM
SIGOPS Operating Systems Review, 44(3):2-19, July 2010.

[17] E. O’Neil, P. O’Neil, and G. Weikum. The LRU-K page
replacement algorithm for database disk buffering. In Proc.
of ACM SIGMOD’93.

[18] G. Pallis and A. Vakali. Insight and perspectives for content
delivery networks. Communications of the ACM, 49(1):101—
106, January 2006.

[19] A. Pathan and R. Buyya. A taxonomy and survey of con-
tent delivery networks. Technical Report, University of Mel-
bourne, 2007.

[20] S. Podlipnig and L. Boszormenyi. A survey of Web cache
replacement strategies. ACM Computing Surveys, 35(4):374—
398, December 2003.

[21] P. Rodriguez, C. Spanner, and E. Biersack. Analysis of Web
caching architectures: hierarchical and distributed caching.
IEEE/ACM Transactions on Networking, 9(4):404-418, Au-
gust 2001.

[22] A. Rousskov and D. Wessels. Cache digests. Computer
Networks and ISDN Systems, 30(22-3):2155-2168, November
1998.

[23] Sandvine Inc. Global Internet phenomena report, 2h 2013,
November 2013.

[24] P. Scheuermann, J. Shim, and R. Vingralek. A case for delay-
conscious caching of Web documents. In Proc. of WWW’97.

[25] X. Tang and J. Xu. QoS-aware replica placement for content
distribution. IEEE Transactions on Parallel and Distributed
Systems, 16(10):921-932, October 2005.

[26] P. Wendell, J. Jiang, M. Freedman, and J. Rexford. DONAR:
decentralized server selection for cloud services. In Proc. of
ACM SIGCOMM’10.

[27] H. Xu and B. Li. Joint request mapping and response rout-
ing for geo-distributed cloud services. In Proc. of IEEE Info-
com’l3.

[28] M. Zink, K. Su, Y. Gu, and J. Kurose. Watch global, cache
local: YouTube network traffic at a campus network - mea-
surements and implications. In Proc. of ACM/IEEE/SPIE
MMCN’08.

