
Minimum-Delay Overlay Multicast
Kianoosh Mokhtarian and Hans-Arno Jacobsen
Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada

Abstract—Delivering delay-sensitive data to a group of re-
ceivers with minimum latency is a fundamental problem for
various distributed applications. In this paper, we study multicast
routing with minimum end-to-end delay to the receivers. The
delay to each receiver in a multicast tree consist of the time
that the data spends in overlay links as well as the latency
incurred at each overlay node, which has to send out a piece
of data several times over a �nite-capacity network connection.
The latter portion of the delay, which is proportional to the
degree of nodes in the tree, can be a signi�cant portion of the
total delay as we show in the paper. Yet, it is often ignored
or only partially addressed by previous multicast algorithms. We
formulate the actual delay to the receivers in a multicast tree and
consider minimizing the average and the maximum delay in the
tree. We show the NP-hardness of these problems and prove that
they cannot be approximated in polynomial time to within any
reasonable approximation ratio. We then present a number of
ef�cient algorithms to build a multicast tree in which the average
or the maximum delay is minimized. These algorithms cover a
wide range of overlay sizes for both versions of our problem.
The effectiveness of our algorithms is demonstrated through
comprehensive experiments on different real-world datasets, and
using various overlay network models. The results con�rm that
our algorithms can achieve much lower delays (up to 60%
less) and up to orders of magnitude faster running times (i.e.,
supporting larger scales) than previous minimum-delay multicast
approaches.

I. I NTRODUCTION

Minimum-delay routing of data in overlay networks is a
fundamental problem for several distributed applications. For
instance, consider a delay-sensitive event noti�cation system
in which an event generated at a node needs to be signaled
to a large group of monitoring nodes with minimum latency,
e.g., a Distributed Interactive Simulation (DIS) software for
military systems [1], [2], �nancial trading through large groups
of globally-interlinked computer systems [3], [4], or massive
multiplayer online games [5], [6]. Also note that the group
of receivers corresponding to a source node in these systems
may not be constant over time, such as a dynamic agent in
a virtual environment (e.g., online game) moving across the
Area of Interest (AOI) of other entities [7], [8].

Therefore, forming overlay multicast groups (which nodes
should join and leave) in such dynamic systems and maintain-
ing the corresponding state information in the intermediate
overlay nodes, as in several classic multicast techniques [9]–
[12], is not an ef�cient solution. A naive alternative approach is
to send each message directly from the source to each receiver.
This solution, however, is not scalable since it requires each
node to have (and constantly monitor the state of) a connection

to every other node in the network. Moreover, this approach
can incur long delays, because a node has a �nite-bandwidth
connection to the network, over which several copies of the
same data should be sent. To avoid these problems, nodes
can be connected through a mesh overlay. Then, source-based
minimum-delay multicast trees can be calculated on demand
for transmitting the data, which is the problem of our interest
in this paper.

While the primary goal of typical shortest-path multicast
schemes has been to minimize the total link-by-link delay
experienced by packets, we observe that a signi�cant portion
of the total delay in a multicast scenario is the delay incurred
at overlay nodes. This is because each intermediate node has
to send out several copies of the same packet through a single,
�nite-capacity network connection. This node-incurred delay,
which is in proportion to the degree of the node in the routing
tree, is in addition to the delay occurring in overlay links and
can even dominate it as we show shortly. In particular, this
issue becomes more critical in large-scale overlay networks
with strong connectivity. In these networks, as intuitively
expected, most shortest paths consist of a few hops only [13],
[14], leading to large node degrees in a multicast tree.

To get a numeric intuition on this problem, suppose we
would like to deliver one packet of1:2 KB (10 Kbits) to
1000 nodes in an event noti�cation overlay. Assume that
overlay nodes have a10 Mbps Internet connection and are
on average handling data of20 concurrent sessions; hence it
takes20 ms for a node to send out one copy of the packet.
Also assume that the delay between every pair of nodes is
100 ms, and the average shortest path length is3 hops in the
overlay (i.e., a delay of300 ms). Thus, the average degree of
nodes in the multicast tree is about10001=3 ' 10, and the
average delay incurred by each node to forward the packet is
averagei =1 ;:::; 10(i � 20 ms)=110 ms, i.e., a total node-incurred
delay of 330 ms in a typical 3-hop path. Note that the total
link-by-link delay of such path was only300 ms.

Yet, the problem with delays incurred by node degrees
in application-layer multicast is often ignored [15]–[19] or
only partially addressed by previous works, such as bounding
node degrees in a tree to prede�ned thresholds [20]–[24]. The
problem with large node degrees, however, is of the same type
as the shortest-path routing problem—minimizing the incurred
delay. It thus needs to be considered together with link delays
in the routing decisions, rather than as a separate problem and
at the coarse grain of being or not being within a threshold.

In this paper, we study the overlay multicast routing problem

for minimizing the actual end-to-end delay. In particular, the
contributions of this paper are as follows. We �rst formulate
the two problems of minimizing the average and the maximum
delay in multicast trees, and we prove their NP-hardness
as well as their inapproximability to within any reasonable
ratio. That is, we show that no polynomial-time approxima-
tion algorithm can guarantee any better delay than several
times beyond the optimal value. We then present a set of
ef�cient algorithms for building multicast trees with minimum
average (or minimum maximum) delay. These algorithms
support a wide range of overlay sizes for both minimum-
average and minimum-maximum applications. To demonstrate
the effectiveness of these algorithms, we conduct an extensive
evaluation study on different real-world datasets, and using
three different overlay network models. We show that the
actual delay observed by multicast receivers can be reduced
by up to 60%, and the calculation time for multicast trees by
up to orders of magnitude (i.e., supporting several times larger
scales), if our algorithms are employed.

In the remainder of this paper, we �rst summarize the related
work in Section II. We then formally de�ne our multicast
problems in Section III and review the routing model on which
our algorithm is built. Section IV presents our algorithms,
followed by a thorough evaluation study in Section V. We
conclude the paper in Section VI.

II. RELATED WORK

The problem of our interest in this paper is to deliver data
with minimum end-to-end delay from a given source to a set of
receivers on a mesh overlay. Compared to arranging nodes in
�xed overlay multicast trees [20], [23], calculating on-demand
per-source trees on a well connected mesh overlay provides
much higher �exibility in selecting paths and better resilience
against dynamics of the network [11], [16]. Moreover, as
discussed earlier we consider source-based multicasting, in
which the intermediate nodes do not need to keep any per-
session state information or to perform route calculations
for each message. Instead, the source node calculates the
routing tree and embeds it in the message (e.g., using Bloom
Filters [25]), and the intermediate nodes only perform simple
forwarding.

Most overlay multicast algorithms only minimize the link-
by-link distance to the receivers [15]–[19]. However, as dis-
cussed earlier, a signi�cant factor in the actual end-to-end
delay is the delay incurred at overlay nodes that send out each
message several times. There have been a number of previous
works that did consider the node degree problem [21], [22],
[24], [26], [27], but they only try to �nd a routing tree in which
the degree of nodes is bounded to prede�ned thresholds. Ito et
al. [27] analyzed several forms of the multicast tree problem,
and showed that it is NP-Complete to �nd various forms
of degree-bounded trees, such as one with minimum total
distance or one with minimum distance to the farthest receiver.
Heuristic algorithms for constructing degree-bounded shortest
path trees [22], [26] and degree-bounded minimum-diameter
spanning trees [21], [28] have been proposed. However, it is

not clear how these degree bounds are selected in practice;
for instance, a �xed bound of 10 is used in [28]. In [24]
it is proposed to set the degree bounds based on the level
of the node in the tree. Nevertheless, these works only aim
at bounding node degrees to given thresholds. Rather than
bounding degrees at such coarse grain, we capture the delay
caused by node degrees together with the delay incurred at
overlay links as a single delay cost and minimize it.

The only previous work considering this problem, to the best
of our knowledge, is done by Brosh et al. [29] who propose
an approximation and a heuristic algorithm for minimizing
the maximum delay in a multicast tree (the problem with
minimum-average delay is not considered). However, the pro-
posed approximation algorithm and its bound only correspond
to the special case ofbroadcastinga message in acomplete
overlay graph, whereas often in practice neither the overlay
is a complete graph (i.e., every node maintains and monitors
a connection with every other node) nor all messages are
destined to all nodes. Furthermore, even for this special case
the approximation factor isO(log n) and O(log n= log logn)
for directed and undirected overlay graphs, respectively, which
is a considerable amount. In fact, the heuristic algorithm
proposed by the authors (with no approximation guarantee)
provides lower delays than the approximation algorithm while
being also more ef�cient in running time [29]. Nevertheless,
the achieved delay and the running time of this algorithm are
signi�cantly larger than our algorithms.

We also note that an important factor determining the
scalability of a multicast scheme is the underlying routing
protocol. The common approach used in [29] and several other
works is link-state based routing [12], [13], [15], [18], [19],
[25], which allows all nodes to know the full topology of
the network while suffering from high overhead and limited
scalability (as we will show). Our multicast scheme, on the
other hand, is based on a variant of distance-vector routing
and can be up to orders of magnitude more scalable.

III. SYSTEM MODEL AND PROBLEM STATEMENT

This section presents the formal statement of our multicast
problems and their hardness, followed by a description of the
routing model underlying our algorithms.

A. Notation

A summary of the notations used in this paper is given in
Table I. Consider an overlay network interconnecting a large
population of distributed hosts. The overlay is modeled by a
graph G = (V; E) in which each vertexv 2 V represents
a host and each edge(u; v) 2 E represents a link between
two connected hosts. LetN = jV j, andw(u; v) be the length
of edge(u; v), which is the network delay between nodesu
and v in our application. We assume each overlay node is
connected to the underlying network, typically the Internet,
via one link (nodes are assumed not multi-homed; also a node
with multiple NICs connected to the same network can be
modeled as having one NIC with the aggregated bandwidth).
The connection bandwidth of each node is a �nite number,

TABLE I
NOTATIONS USED IN THIS PAPER.

Notation Description
G,V ,E ,N Overlay graphG = (V; E). N = jV j.
GPV Partial view of overlay graph based on path vectors.
T; s; R The routing tree, the source node, and the set of

receiver nodes, respectively.
z Size of the message being distributed.
� u (z) Time it takes for nodeu to send out a message of

sizez.
w(u; v) Delay of overlay link(u; v).
dT ,dG (u) Degree of nodeu in treeT or graphG.
qu;T (v) The turn of v among the children ofu in T .
tT (u) Time at which nodeu receives the message over

treeT .
gT (u) Number of receiver nodes in the subtree rooted at

u in treeT (including u itself).
hT (u) The delay fromv to its farthest descendant.
D; D max Average and maximum node degree in the overlay.
L; L max Average and maximum hop count of pairwise

shortest paths in the overlay.

according to which we de�ne� u (z) as the time it takes for
nodeu to sendz units of data to the network. Since the time
for nodeu to process a message is much smaller than the time
it takes to send out (possibly multiple copies of) the message
to the network, we ignore the processing time atu and let
� u (�) be a function of the connection bandwidth ofu only.
For example, for a host with a 10 Mbps Internet connection
and a message ofz = 1 bit, � u (z) = 10 � 7 seconds.

We capture the node degree-incurred delays (also referred to
as nodal delays) in a multicast tree as follows. LetT denote an
arbitrary multicast tree rooted at a given sources and reaching
the receiver setR � V , anddT (u) be the number of children
of u in T. Onces started distributing a message of sizez at
time 0,tT (v) is the time at which nodev receives the message
over T. Assuming nodeu is the parent ofv in T, we have:

tT (s) = 0; tT (v) = tT (u)+ w(u; v)+� u (z) � qu;T (v); (1)

wherequ;T (v) (1 � qu;T (v) � dT (u)) shows theturn of node
v among thedT (u) children of u in T that are waiting to
receive a copy of the message.

Because in some cases we may not be able to explicitly
dictate an order among the children ofu in T, we also take
the expecteddelay observed at each child ofu into account.
We de�ne t̂T (v) as in the following equation, by replacing
qu;T (v) in Eq. (1) with E [qu;T (v)], the average of possible
turns between1 anddT (u) for a child.

E [qu;T (v)] =
1

dT (u)

dT (u)X

i =1

i = (dT (u) + 1) =2

t̂T (s)=0; t̂T (v) = t̂T (u) + w(u; v) + � u (z)
dT (u)+1

2
: (2)

B. Formal De�nition of the Problems

We consider two versions of the minimum delay multicast
problem: (i) constructing a multicast tree in which the average

delay (equivalently, the total delay) is minimized, and (ii) a
tree in which the delay to the farthest node is minimized. We
propose algorithms for both versions of the problem.

Our algorithms for case (i) are not based on encoding the
tree structure in full in the data; they do not need to specify
a forwarding order for each intermediate tree node, and can
work with t̂T (v) values de�ned in Eq. (2). This is preferred,
as it enables the use of mechanisms such as Bloom Filters
for encoding the tree [25]. The algorithms for case (ii), on the
other hand, have to specify a forwarding order for the children
of each node (and therefore work withtT (v) values de�ned
in Eq. (1)), since the maximum delay in a tree depends to a
large extent on the ordering of each node's children.

Problem 1: Given a source nodes and a set of receivers
R � V , construct a multicast treeT such that

P
u2 R t̂T (u) is

minimized.
Problem 2: With the same inputs as in Problem 1, construct

a multicast treeT such thatmaxu2 R tT (u) is minimized.
Theorem 1 shows the NP-hardness as well as an inapprox-

imability factor for Problems 1 and 2. The proofs are omitted
due to space limitations and can be found in [30].

Theorem 1:Problems 1 and 2 are NP-hard, and also no
polynomial time approximation algorithm for either of them
can guarantee an approximation factor of(1 � �) ln n for any
� > 0 (under the conventional assumptions for P and NP).

C. Routing Model

To enable a fully distributed routing scheme, overlay nodes
need to generate and exchange periodic routing information.
We adopt a modi�ed version of the distance-vector routing
protocol, where each node announces its shortest distance
to each destination, as well as the path itself; in our case
the nodes also announce their� u (�) values along with this
information. This is similar to the technique employed in
the BGP protocol and is usually referred to as path-vector
routing. This approach allows each nodeu to construct a graph
Gu

PV = (V u
PV; E u

PV) whereV u
PV = V , andE u

PV consists of only
a representativesubset ofE for u: the edges on the shortest
path, as well as up todG (u) � 1 alternative short paths, from
u to all destinations in the graph. A brief comparison of the
overhead and other desirable features of path-vector routing
compared to the two alternatives, distance-vector and link-state
routing (used in most overlay routing schemes), is given in our
extended technical report [30].

IV. M INIMUM -DELAY MULTICAST ALGORITHMS

In this section, we �rst provide an overview of our
minimum-delay multicast tree algorithms, and then present the
details as well as the analysis of the algorithms.

A. Overview of the Algorithms

Our algorithms include two operation modes: MinSum for
minimizing the expected total delay (Problem 1), and MinMax
for minimizing the maximum delay in the tree (Problem 2). We
refer to these algorithms asMSDOM and MMDOM (Min-
Sum/MinMax Delay Overlay Multicast). These algorithms

outperform the previous related approaches in both multicast
tree ef�ciency and running time, as analyzed in the next
section. Nevertheless, to further extend the application of our
work to larger overlays, we design an additional algorithm for
each operation mode (MinSum/MinMax) that is optimized for
speed, with orders of magnitude faster running times. These
algorithms are particularly suitable for large overlays where
our former algorithms (and the related previous approaches)
cannot operate fast enough. We refer to the former (delay-
ef�cient) algorithms as MSDOM/MMDOM-e, and to the latter
(fast) version as MSDOM/MMDOM-f algorithms.

Each overlay node that is to distribute a message runs
the relevant version of the algorithm based on the target
applications. The input to the algorithm consists of the state
of the node's links to its neighbors, as well as the path vector
information that the node has received from its neighbors. The
resulting multicast tree is then encoded in the message. The
intermediate overlay nodes are free of any additional computa-
tions or keeping any per-session multicast state information—
they only forward the data to their neighbors according to the
information embedded in it.

The multicast tree calculated by the source node can either
be encoded in full in the message (with an overhead ofO(N)),
or be encoded as a digest, e.g., using �xed-size Bloom Filters
that can signi�cantly reduce the overhead with negligible false
positives [25]. In this paper we only study the calculation of
minimum-delay multicast trees, and the detailed encoding of
the tree is out of the scope of the paper. Nevertheless, we
highlight that the MSDOM algorithms do not need to specify
the full tree structure for the intermediate forwarding nodes—
they allow the use of Bloom Filter digests. The MMDOM
algorithms, on the other hand, requires to signal the full tree
structure (as in the similar work in [29]), because a forwarding
order among the children of each node needs to be speci�ed
so that the forecasted maximum delay can be actually met in
the network; seequ;T (v) in Eq. (1).

The routing table underlying our algorithms is adG (s) � N
matrix at each nodes (based on which theGPV view is created
at s); see Table I and Section III-C. An entry(i; j) of this
matrix represents the shortest path to overlay nodej through
the i -th neighbor ofs. Row i of this matrix is maintained
over time according to the path vector information that the
node receives from the corresponding neighbor. Each path
vector entry from this neighbor represents the shortest path
of this neighbor to some overlay node: the path's hops and
hop-by-hop distances (i.e.,O(L max)). Moreover, a min-heap is
maintained on each column of the table, to quickly return the
best neighbor for reaching each destination. The complexity
of maintaining the routing table is analyzed shortly.

B. Detailed Multicast Algorithms

Our multicast algorithms are speci�ed in Figures 1 and 2. In
the MSDOM-e algorithm, we start from the sources and build
the multicast tree by incrementally adding nodes according to
their distances to the current tree. More speci�cally, for any
potential attachment(u; v) to the treeT where u 2 T and

Minimum End-to-end Delay Overlay Multicast

MSDOM_e()y

1. T = BuildEmptyTree(s) ; t [i = 1 ; : : : ; N] = 1 ; t [s] = 0
2. while R 6= ; do
3. cost[] = ; ; prev[] = ; // To �nd the best node to attach toT
4. for v in V � T do
5. cost0[] = ; // To �nd the best attachment point forv
6. for u in neighbors(v; GPV) s.t. u 2 T do
7. // Cost of attachingv to T throughu:
8. cost0[u] = t[v] + ~w(u; v) + (dT (u) + 2) =2 � � u (z)
9. cost0[u] += 1 =2 � � u (z) � (SubTreeSizeT (u) � 1)
10. u� = argmin(cost0) // Best attachment point forv
11. if u� == NULL then continue
12. cost[v] = cost0[u�]
13. prev[v] = u�

14. v� = argmin(cost) ; u� = prev[v�]
15. AttachToTree(T; v� ; u�)
16. if v� 2 R then R.remove(v�)
17. Update_t(T; u� ; t [])
18. CleanUp(T; s)
19. return T

MMDOM_e ()y

1. T = BuildEmptyTree(s) ; t [i = 1 ; : : : ; N] = 1 ; t [s] = 0
2. while R 6= ; do
3. for u in V do
4. prev[u] = � 1
5. dist[u] = t[u] + dT (u) � � u (z)
6. S = V
7. while S 6= ; do
8. u� = argminu 2 S (dist[u])
9. S:remove(u�)
10. for v in neighbors(u� ; GPV) s.t. v 62T do
11. d = dist[u�] + � u � (z) + ~w(u� ; v)
12. if d < dist[v] then
13. dist[v] = d
14. prev[v] = u�

15. // Attach the farthest node toT :
16. v� = argmaxv 2 R nT (dist[v])
17. H = List containing hops of path tov� according toprev[]
18. for v from H .FirstNodeNotInTree(T) to H .last() do
19. u = prev[v] // Parent of the to-be-attached nodev in T
20. AttachToTree(T; v; u)
21. t [v] = dist[v]
22. if v 2 R then R.remove(v)
23. return T

y Variables used in the code are described in Table I.

Fig. 1. The proposed overlay multicast algorithm.

v 62T (Lines 4 and 6), we �nd the cost as the increase in the
expected total delay to all nodes caused by this attachment
(Lines 8 and 9). This delay consists of the expected delay to
nodev itself, as well as the expected delay to be suffered from
by other descendants ofu since the degree ofu is going to
increase (see Eqs. 1 and 2). Having applied the minimum-cost
attachment(u� ; v�) (Lines 14 and 15), we update the current
distance value (arrayt) of all affected nodes (Line 17), i.e.,
the children and all further descendants of nodeu� . Finally,
we clean up the tree (Line 18) by keeping only the paths that
end at some receiver node.

The MMDOM-e algorithm repeatedly runs our modi�ed
version of the Dijkstra algorithm to �nd the farthest node
from the current treeT. This modi�ed shortest-path algorithm
(Lines 3 to 14) can start from multiple nodes (see the ini-
tialization of dist[] in Line 5), considers the current degree
of nodes in the existing tree (Line 5), and expands based on
aggregated link and nodal delays given the current tree (Line
11). Having found the farthest nodev� from the tree,v� as
well as its predecessors on the path starting from some node
in T (i.e., nodes in listH in Line 17) are added to the tree.
Note that after this addition, the degree of a number of nodes
changes, making the recently calculated shortest-path distances
no longer accurate. Thus, the next farthest node is searched
for again in the next iteration.

The running time of the MinSum and MinMax algorithms
presented so far, as we analyze shortly, isO(N 2DPV) where
DPV is the average degree in the path-vector based view of
the overlay graph. This running time may not be ef�cient
enough for large overlays, as quanti�ed in the next section. We
therefore develop additional algorithms, MSDOM/MMDOM-
f, which are optimized for speed.

In these algorithms, which are illustrated in Figure 2, we
�rst calculate the regular shortest-path tree froms to the
receivers. This is simply done by merging the shortest paths
to the destinations given in the path-vector routing table (an
example on the MSDOM/MMDOM-f algorithms and routing
tables can be found in the extended technical report [30]).
This tree is then re�ned according to the given objective:
minimizing the total delay or the maximum delay.

In the MSDOM-f algorithm, the tree is re�ned in a top-
down manner from the root downwards. For each nodeu,
we look at each of its childrenv and consider routing to
it through an alternative route (Lines 5 and 6 of function
Re�neTree[MinSum]). The alternatives for a nodev are to
route tov through any other of thedG (s) neighbors of the root
s than the one currently used to reachv. Given the path vector
information available ats, we evaluate the possible alternative
routes, and change the current route tov if necessary (Lines
7 to 10). To re�ne the route to the children of nodeu, we
�rst consider those children that have the highest number of
receivers in their subtrees (the sort operation in Line 2), since
any saving in the delay to those children will likely yield a
higher overall saving. Once �nished relaxing the degree of
nodeu, the algorithm proceeds with the next level which is
re�ning the subtree of each child ofu.

For the MMDOM-f algorithm, we �rst note that the maxi-
mum delay in the subtree rooted at a nodeu can vary much
based on the ordering ofu's children to receive the message
(seequ;T (v) in Eq. 1). Thus, we need to obtain an optimal
ordering for the children ofu. Denoting byhT (v) the delay
from v to its farthest descendant, the optimal ordering of
u's children for minimizing the maximum delay corresponds
to sorting the children in descending order of theirhT (v)
values. This is done for all nodes of the tree in function
T.FixForMinMax (Line 1; similarly done later for any affected
node in Line 13). In each iteration, the algorithm picks the

Minimum End-to-end Delay Overlay Multicast

MSDOM_MMDOM_f (mode)y

// mode: MinSum or MinMax.
1. T = BuildRegularShortestPathTree(s)
2. Re�neTree[mode](T; s)
3. return T

Re�neTree[MinSum] (T; u)
1. if u.IsLeaf() then return
2. C[] = u:children() sorted in descending order ofgT (C[i])
3. for v in C[] do
4. t0[] = ;
5. for a in T .root.neighbors() do
6. t0[a] = SavingByRouteChange(T; v; a)
7. a� = argmaxf t0[]g
8. if t0[a�] > 0 then
9. T:DeleteRoute(v) // Detachv and its subtree
10. T:InsertRoute(v; a�)
11. SortC[] again in descending order ofgT (C[i])
12. for v in C[] do
13. Re�neTree(T; v)

Re�neTree[MinMax] (T; u)
1. T:FixForMinMax()
2. for i = 1 to MAX_REFININGSdo
3. v = T:FarthestLeaf()
4. t0[] = ;
5. for a in T .root.neighbors() do
6. t0[a] = SavingByRouteChange(T; v; a)
7. a� = argmaxf t0[]g
8. if t0[a�] � 0 then break // No more re�nings
9. T:DeleteRoute(v) // Detachv and its subtree
10. T:InsertRoute(v; a�)
11. while v 6= T .root do
12. v = v.parent
13. v:FixChildrenForMinMax()
14. T .FixNodesDS()

y Variables used in the code are described in Table I.

Fig. 2. The proposed routing algorithm.

node with maximum delay (Line 3), and tries to �nd an
alternative shorter route to the node (Lines 5 and 6).

The algorithm terminates if the tree reaches a state where
the distance to the farthest node cannot be shortened (Line
8), or if the total number of re�ning steps reaches a bound
(MAX_REFININGS in the code). We set this bound to
N= logN) to keep the worst-case running time toO(N 2)
(analyzed shortly), although in our experiments the algorithm
has terminated much earlier than this bound. To enable ef-
�cient reordering of each node's children and retrieval of
the farthest node in the tree, at each nodev we maintain
certain information includingtT (v) and hT (v). After each
modi�cation in the tree, the information maintained at up
to O(N) nodes may need to be updated. For example, after
moving nodev from its old parentu to a new parentu0, the
delay to each descendant ofv, the correct ordering of the
children ofu0 and those ofu0's ancestors, and accordingly the
delay to each descendant ofu0 andu0's ancestors needs to be
updated. Therefore, we simply update the data structures for all
nodes of the tree inO(N) time (Line 14 of the pseudocode).

C. Analysis

A summary of the memory requirement and running time
of our algorithms is as follows. The total memory space for
maintaining the required data structures at a node and running
our algorithms is on averageO(NDL max), whereL max is the
maximum hop count in a shortest path (i.e., the hop count of
the overlay diameter). Moreover, the time taken by a node to
update the routing table, upon receiving a path vector of size
O(NL max) from a neighbor, is ofO(N (L max + log N)) . The
running time of both MSDOM-e and MMDOM-e algorithms
is bounded byO(N 2DPV). The MSDOM-f algorithm runs in
O(NDL max) time. The MMDOM-f algorithm takesO(N 2)
time, given that we bound the number of its re�ning steps
(each takingO(N logN) time) to N= logN as mentioned
earlier; though we also note that the number of re�ning steps
taken by this algorithm in our experiments has been far less
thanN= logN . Additional details on our complexity analysis
can be found in the extended technical report [30].

V. EVALUATION

We evaluate the performance of our algorithms on hundreds
of overlay networks built on top of two different real-world
Internet delay datasets, and according to three different overlay
graph models. Our evaluation setup and the obtained results
are presented in this section.

A. Setup

To capture the actual delay between hosts in the Internet,
which is a key factor determining the effectiveness of any
overlay multicast algorithm, we use the data from two different
measurements: the Delay Space Synthesizer (DS2) project [31]
which provides the measured pairwise delay between about
4000 Internet hosts, and theMeridian project [32] containing
the delay between 2500 hosts. We sometimes need to down-
sample the set of 4000 (or 2500) nodes toN < 4000 nodes
in our experiments. To ensure having a representative subset,
we use a variant of thek-means clustering algorithm [33] that
takes the bestN center points among the original 4000 (or
2500); it minimizes the sum of the squared distance between
each original point and its closest center point.

On top of these datasets, we create overlay networks based
on three different overlay graph models:small world [34],
random [35], andpower law [36]. In small-world networks,
links are more likely to exist between nearby nodes than
distant nodes [34]. These networks are commonly observed
in social and P2P networks [37]; they have also yielded
the smallest shortest-path length between nodes in our ex-
periments. We generate these networks by connecting each
pair of nodes(u; v) with probability � � distance(u; v) � 1,
where the coef�cient� is set according to the desired average
node degreeD in the overlay. On the other hand, random
networks are simpler in which all edges of different lengths are
treated similarly. Speci�cally, we generate random networks
according to the Erdos-Renyi model [35] where each pair of
nodes(u; v) exists with probabilityp, which we set according
to the desired average degreeD. In a power-law network (also

called a scale-free network), such as the worldwide web, nodes
that are popular are more likely to receive new links; the
network therefore has a power-law degree distribution [36].
We generate these networks following the Barabasi-Albert
model [36], where a new nodex connects to an existing node
u with probability �d G (u)=

P
v2 V dG (v) (� determining the

average degree).
The parameters that we vary in our evaluations include

the overlay size (N), average node degree (D), number
of receivers (jRj), and node-incurred delays (including their
dynamics). Speci�cally, we de�ne�� as the average time that
it takes for a node to send out each copy of the message. To
get a sense of various combinations of node bandwidth and
workload as well as message size (which are the factors gov-
erning the nodal delay), we consider a diverse range of values
for �� from 10 ms to 1000 ms in our experiments, assumed
the same (� 50%) for all nodes. For example,�� = 10 ms can
represent the case where the message is a 10 Kbits (1.2 KB) IP
packet, and each node has a 10 Mbps Internet connection and
is handling 10 concurrent multicast sessions on average; we
also analyze the dynamics of nodal delays in our evaluations.
Furthermore, to consider the delivery of a continuous �ow of
data, we note that each node would send the data in chunks to
its children in the multicast tree. Assuming TCP transport, to
maximize the throughput, the node sends a continuous chunk
of up to a full TCP window to its �rst child, then to the second
child, and so on. The message sizez can therefore be assumed
up to the maximum window size, e.g., 128 KB (1 Mbits)
as it is the default value in most Linux distributions. Thus,
�� = 1000 ms can represent the multicast of a continuous
�ow on the aforementioned network.

Given an overlay network ofN nodes and a number of
receiversjRj, in each run we select a sender andjRj receivers
at random from[1; N]. We then generate multicast trees using
ours as well as previous approaches (described shortly) on the
same input:GPV view of the overlay,s and R. We repeat
each experiment 100 times: on 10 different overlays, and 10
different sender/receivers selection on each overlay. We then
measure the average delay and running time obtained in the
100 cases. Finally, since in the MinSum algorithms a source
does not transmit the full (ordered) tree structure (see Section
III), we simulate this lack of knowledge by shuf�ing the
children of each node in the created tree before evaluating
the average delay to the receivers.

B. Results

We evaluate the MSDOM algorithms by comparing the
achieved average delay with the average delay in the regular
shortest-path tree (SPT) for the same overlay and receiver
set. We also compare these results with the delay achieved by
the algorithm in [26], which builds a MinSum-delay multicast
tree with bounded degrees—the closest work in the literature
to our MinSum algorithms, to the best of our knowledge. We
run a binary search to �nd the best degree bound value for this
algorithm, though in our running time measurements presented
shortly we only measure the time taken by one run of this

2 3 4 5
1

2

3

4

5

6

7

Variation factor for ¢ u

A
ve

ra
ge

de
la

y
(s

ec
)

SPT
MLRS
MSDOM-f
MSDOM-e

(a) MinSum-delay trees.

2 3 4 5

2

4

6

8

10

12

Variation factor for ¢ u

M
ax

de
la

y
(s

ec
)

SPT
BLS
MMDOM-f
MMDOM-e

(b) MinMax-delay trees.

Fig. 5. Dynamics of nodal delays (� u).

MMDOM-f and BLS trees are close, while the former one is
created 2 to 3 orders of magnitude faster (5–100 ms vs. 13+
seconds in different experiments). Finally, regular shortest-path
trees suffer from high average/maximum delays in all cases: up
to 5 times higher delay than that of our algorithms. Additional
details on these experiments including �gures and numerical
analyses can be found in [30].

In an actual system, the nodal delays (� u (�)), just like
the round-trip delay between nodes (i.e., link delays), are
not static values. Although each nodeu announces its� u

value (short for � u (1), to be precise) as a representative
average over time, e.g., EWMA averaged, the momentary
nodal delay ofu at the time of forwarding our message
may be considerably different than the announced average.
Neither ours nor previous algorithms are speci�cally designed
to capture the uncertainty of these delays. Nevertheless, to
have a thorough evaluation study, we analyze the impact of
� u dynamics on the ef�ciency of the different multicast trees.
Therefore, right before evaluating a created tree, we change
the � u value of each nodeu to have a random increase or
decrease bymultiple times: denoting thevariation factor of
a nodal delay byv (v = 1 ; 2; : : :), we change each� u to
a randomly selected value in[� u =v;� u v]; that is, � u is
multiplied by ex wherex � U(� ln v; ln v). Figure 5 shows
the impact of these dynamics. As expected, the average and
maximum delay of all trees rise by the increased �uctuation
of nodal delays; we should also note that this is partially
because the average nodal delay in the network increases by
8%, 20%, 35%, and 50% forv = 2 ; : : : ; 5, respectively. We
observe that with varying� u dynamics, the performance of
the algorithms relative to each other remains more or less the
same, with MSDOM/MMDOM-e algorithms always resulting
in the lowest-delay trees.

We also evaluate our algorithms on both datasets DS2 and
Meridian, and using all the three network models of small
world, random, and power law. The results, including tree
delays and running times, are presented in Figure 6. The
running times for SPT are omitted as they are negligible—
few milliseconds to only merge the shortest paths given in the
routing table. These experiments are conducted on overlays of
size N = 1000 with R = 999, D = 100, and �� = 100 ms.
The experiments for each of the two datasets, represented
by the �rst two sets of bars in Figures 6(a) and 6(b), are
conducted on all the three overlay models and the results are

averaged. Similarly, the experiments for each overlay model,
represented by the last three sets of bars in each �gure, are
run on both datasets and the average is plotted. We observe in
these �gures that the different algorithms perform more or less
the same as in the previous experiments: MSDOM/MMDOM-
e algorithms produce the most delay-ef�cient trees (45–60%
smaller delays than MLRS and 20–40% than BLS) while also
running slightly faster than the previous approaches; note the
running times written on top of the bars. MSDOM-f also has
better tree ef�ciency (15–40%) and running time (over an
order of magnitude) than MLRS. MMDOM-f runs in almost
zero time for the same inputs on which MMDOM-e and BLS
algorithms have taken 10+ seconds, while still creating trees
with reasonable delay-ef�ciency—compare to SPT which is
the only relevant alternative according to running times.

Summary. We have observed that our algorithms together
can support a wide range of overlay sizes for both MinSum and
MinMax versions. The MSDOM/MMDOM-e algorithms out-
perform previous approaches in both tree ef�ciency and run-
ning time, and are the best choice for overlays of 100x nodes.
For larger overlays, where previous approaches as well as
MSDOM/MMDOM-e are not feasible, MSDOM/MMDOM-f
algorithms are suggested which can run fast (100–160 ms for
N = 2000 and 340–490 ms forN = 4000 in our experiments
in Figure 4) while producing trees with reasonable delay
ef�ciencies: 40–55% smaller delays than SPT trees which are
the only applicable alternative.

VI. CONCLUSIONS

We have studied the problem of delivering data from a
source to a group of receivers with minimum end-to-end
delay in an overlay network. We show that multicast routing
algorithms that simply �nd a shortest-path tree can result
in large delays as they only minimize the link-by-link cost,
ignoring the important delay incurred at high-degree nodes
in the tree. We formulate the problems of minimizing the
average and the maximum delay in a multicast tree, and show
that they are NP-hard. We also show that no polynomial-time
approximation algorithm can be found for these problem with
a reasonable approximation ratio. We design four algorithms
that heuristically create multicast trees with minimum delays:
for each of the two minimum-average and minimum-maximum
delay cases, we design a delay-ef�cient algorithm as well as
a scale-ef�cient one that is orders of magnitude faster. The
collection of these algorithms supports a wide range of overlay
scales, from a few hundred to a few thousand nodes. We
have conducted a comprehensive evaluation of our algorithms
on different real-world dataset and on overlays created by
three diverse network models. Our results con�rm that our
algorithms can achieve signi�cantly lower delays (up to 60%)
and smaller running times (up to orders of magnitude) than
previous minimum-delay multicast algorithms.

Next, we are working on algorithms to ef�cientlyupdatea
previously created multicast tree, rather than re-building it, if
the group of receivers has not signi�cantly changed (such as
in the example at the beginning of Section I).

