
Location-based Matching in Publish/Subscribe Revisited

Mohammad Sadoghi, Hans-Arno Jacobsen
Middleware Systems Research Group

Department of Computer Science
University of Toronto, Canada

ABSTRACT

Event processing is gaining rising interest in industry and in academ-
ia. The common application pattern is that event processing agents
publish events while other agents subscribe to events of interest.
Extensive research has been devoted to developing efficient and
scalable algorithms to match events with subscribers’ interests. The
predominant abstraction used in this context is the content-based
publish/subscribe (pub/sub) paradigm for modeling an event pro-
cessing application. Applications that have been referenced in this
space include emerging applications in co-spaces that rely on locat-
ion-based information [1, 7], algorithmic trading and (financial)
data dissemination [13], and intrusion detection system [4]. In this
work, we focus primarily on the role of state-of-the-art matching
algorithms in location-based pub/sub applications.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information filtering

General Terms

Algorithms, Design, Measurement, Experimentation, Performance

Keywords

(Location-based) Publish/Subscribe, Complex Event Processing

1. INTRODUCTION
The co-existence of virtual and physical worlds brings unique

opportunities for a new generation of applications. Applications
that use information such as location gathered from the virtual world
to continuously enrich users’ physical world experience while us-
ing the real-time information gathered from the physical world to
refresh the virtual world in turn [1, 7]. Examples of co-space ap-
plications are location-driven marketplace applications that allow
virtual and physical shoppers to compete (bid on the last item)
or cooperate (buy one get one free), location-based gaming that
changes the gamer’s environment relative to the gamer’s physical
location, and social networking applications that detect when vir-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware 2012 Posters and Demos Track December 3-7, 2012, Montreal,
Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1612-5/12/12 ...$15.00.

tual friends are within a close proximity and initiate a physical in-
teraction among them [7].

The efficient processing of large collections of patterns (e.g.,
Boolean expressions) over data streams plays a central role in major
location-based services and other data intensive applications rang-
ing from user-centric processing and personalization to real-time
data analysis. For instance, emerging user-centric applications,
including interactions in co-spaces and location-aware computa-
tional advertising, demand determining and presenting to an end-
user only the most relevant content with respect to users’ physical
location. We achieve these user-centric requirements through novel
high-dimensional indexing structures.

Some of the key challenges in efficient Boolean expression in-
dexing are (1) scaling to millions of Boolean expressions defined
over a high-dimensional space (2) enabling dynamic insertion and
deletion of expressions, and, (3) indexing expressions enhanced
with location-based predicates.

Although there has been a large body of work on developing
efficient matching algorithms (e.g., [2, 3, 9, 10, 5, 4, 6, 12, 8]),
the problem of location-based matching has received little atten-
tion. In fact, there is a myth that existing techniques are not suit-
able for real-time location-based matching and new algorithms are
needed [6]. Contrary, to general belief, in this paper, we demon-
strate that an existing state-of-the-art matching algorithm, i.e., BE-

Tree [10], seamlessly scales when applied to location-based set-
tings.

The core contributions of this work is to formalize the location-
based Boolean expression matching problem and to present ex-
perimental evidence that establishes the effectiveness of existing
matching techniques for location-based settings.

2. RELATED WORK
Problems related to indexing Boolean expressions have been stud-

ied in many contexts such as publish/subscribe matching [2, 3,
10, 5, 6] and XPath/XML matching [9]. In general, two main
categories of matching algorithms have been proposed: counting-
based [3, 5, 6] and tree-based [2, 10] approaches. These approaches
can further be classified as key-based, in which for each expres-
sion a set of predicates are chosen as identifier [3]. Counting-based
methods aim to minimize the number of predicate evaluations by
constructing an inverted index over all unique predicates. One of
the most efficient counting-based algorithms are Propagation [3],
a key-based method. Likewise, tree-based methods are designed
to reduce predicate evaluations and to recursively divide the search
space by eliminating subscriptions on encountering unsatisfiable
predicates. The most prominent tree-based method, BE-Tree, is a
dynamic key-based algorithm [10], which is shown to outperform
both tree- and counting-based state-of-the-art algorithms [10].

3. EXPRESSION MATCHINGMODEL
In our pub/sub matching model, the input is a set of subscriptions

(a conjunction of Boolean predicates) and an event (an assignment
of a value to each attribute), and the output is a subset of subscrip-
tions satisfied by the event. In fact, we also model our events as
Boolean expression to enable a more powerful event language.

In short, we define a Boolean expression as conjunction of Bool-
ean predicates. A predicate is a triple, consisting of an attribute
uniquely representing a dimension in n-dimensional space, an op-
erator, and a set of values, denoted by P attr,opt,val(x), or more
concisely as P (x). A predicate either accepts or rejects an in-
put x such that P attr,opt,val(x) : x −→ {True, False}, where
x ∈ Dom(P attr) and P attr is the predicate’s attribute. Formally, a
Boolean expression be is defined over an n-dimensional space as
follows:

be = {P attr,opt,val
1

(x) ∧ · · · ∧ P attr,opt,val

k (x)},

where k ≤ n; i, j ≤ k, P attr
i = P attr

j iff i = j

We support an expressive set of operators for the most common
data types: relational operators (<, ≤, =, 6=, ≥, >), set operators
(∈, /∈), and the SQL BETWEEN operator.

Our subscription language is expressive enough to capture locat-
ion-based information. The location information can be encoded
as either longitude/latitude or three-dimensional (x, y, z) coordi-
nates. For instance, a location in Toronto can be expressed as
[Latitude = 43.6481] and [Longitude = −79.4042].

Matching Semantics The expressiveness of our subscription and
event language enables supporting a wide range of matching se-
mantics. In this paper, we focus primarily on the classical pub/sub
matching problem: Given an event ǫ and a set of subscriptions Σ,

find all subscriptions σi ∈ Σ satisfied by ǫ. We refer to this prob-
lem as stabbing subscription SQ(ǫ) given by:

SQ(ǫ) = {σi| ∀P
attr,opt,val
q (x) ∈ σi, ∃P

attr,opt,val
o (x) ∈ ǫ,

P attr
q = P attr

o ,∃x ∈ Dom(P attr
q), Pq(x) ∧ Po(x)}

4. EVALUATIONS
Our evaluation is conducted using an Intel XeonW3565 3.20GHz

(launched in 2009) machine with 6GB of memory running Ubuntu
12.04. In our experiments two major algorithms were considered.
Our PC-based algorithm, namely, BE-Tree, is single-threaded and
written in C and compiled using gcc 4.6.3 [10]. In addition, we
have drawn results from the GPU-based algorithm CLCB that is ran
on Nvidia GTX 460 (launched in 2010-11) with 1GB of memory
using the CUDA Toolkit 4.1 [6].

We experiment with two variations of BE-Tree, which are both
based on [10]. BE-Tree 1.1 is based on [10] (and partial optimiza-
tion from [11]), whereas BE-Tree 1.31 consists of all optimizations
that were introduced in BE-Tree’s extended paper [11].

We rely on default workloads used in [6], which serves as a
common benchmark. The workload consists of executing 1000
events over 2.5 millions subscriptions. Both events and subscrip-
tions consist of 3-5 predicates drawn uniformly from 100 dimen-
sions, where the cardinality of each domain is 65K. The subscrip-
tions and events in the location-based workload have only 2-4 reg-
ular predicates plus an additional location-based predicate. Since
the location predicates generated in [6] have higher selectivity, the
average number of matched subscriptions are increased from 3 to

1The BE-Tree 1.3 binary is available on http://www.cs.
toronto.edu/~mo/projects.html

Table 1: Comparing BE-Tree (PC) and CLCB (GPU)
Workload Type BE-Tree 1.1 BE-Tree 1.3 CLCB

without location 0.081 ms 0.045 ms N/A

with location 0.144 ms 0.067 ms 0.306 ms

70 when moving from the workloads without to with location pred-
icates.

The experimental results are summarized in Table 1. The CLCB

algorithm (ran on GPUs) on average processes each event in 0.306
ms for location-based workloads while BE-Tree 1.3 can a sustain an
average matching time of 0.045 ms for non-location-based work-
load and matching time of 0.067 ms for location-based workload
(nearly 5x faster than CLCB). The slight increase in BE-Tree match-
ing is due to increased number of matched subscriptions.

Therefore, contrary to the reported results in [6] (based on BE-

Tree 1.1), in fact, not only BE-Tree’s matching time does not dete-
riorate when adding location-based information (because BE-Tree

makes no distinction between location and non-location-based pred-
icates and BE-Tree’s underlying novel two-phase space-cutting tech-
nique can utilize all types of predicates), but BE-Tree also out-
performs the CLCB algorithm ran on GPUs [5, 6]. The incorrect
BE-Tree results reported in [6] was due to supplying BE-Tree with
wrong parameters, not visible to the authors in [6]; thus, the authors
were unaware of this misconfiguration [6].

5. CONCLUSIONS
In this work, we demonstrated that BE-Tree [10], a novel in-

dex structure to efficiently index Boolean expression over a high-
dimensional space, can seamlessly support expressions with locat-
ion-based predicates. In addition, we shown that the BE-Tree match-
ing time using a single thread substantially outperforms the special-
ized matching algorithms designed for GPUs [5, 6].

6. REFERENCES
[1] R. Agrawal, A. Ailamaki, P. A. Bernstein, et al. The

Claremont report on database research. SIGMOD Rec.’08.
[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and

T. D. Chandra. Matching events in a content-based
subscription system. In PODC’99.

[3] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering algorithms and implementation for
fast pub/sub systems. SIGMOD’01.

[4] A. Farroukh, M. Sadoghi, and H.-A. Jacobsen. Towards
vulnerability-based intrusion detection with event
processing. DEBS’11.

[5] A. Margara and G. Cugola. High performance content-based
matching using GPUs. DEBS’11.

[6] A. Margara and G. Cugola. High-performance
location-aware publish-subscribe on GPUs. Middleware’12.

[7] B. Ooi, K. Tan, and A. Tung. Sense the physical, walk
through the virtual, manage the co (existing) spaces: A
database perspective. In SIGMOD Rec.’09.

[8] M. Sadoghi. Towards an extensible efficient event processing
kernel. In SIGMOD/PODS PhD Symposium’12.

[9] M. Sadoghi, I. Burcea, and H.-A. Jacobsen. GPX-Matcher:
A generic Boolean predicate-based XPath expression
matcher. In EDBT’11.

[10] M. Sadoghi and H.-A. Jacobsen. BE-Tree: an index structure
to efficiently match Boolean expressions over
high-dimensional discrete space. In SIGMOD’11.

[11] M. Sadoghi and H.-A. Jacobsen. Indexing Boolean
expression over high-dimensional space. Technical Report
CSRG-608, University of Toronto, 2010.

[12] M. Sadoghi and H.-A. Jacobsen. Relevance matters:
Capitalizing on less (top-k matching in publish/subscribe).
ICDE’12.

[13] M. Sadoghi, H.-A. Jacobsen, M. Labrecque, W. Shum, and
H. Singh. Efficient event processing through reconfigurable
hardware for algorithmic trading. PVLDB’10.

