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Abstract

Overlay network design for topic-based publish/subscribe systems is of primary importance because the overlay directly
impacts the system’s performance. Determining a low fan-out topic-connected overlay (TCO) is a fundamental problem.

Existing algorithms for constructing TCOs with provably low fan-out build the overlays from scratch. In this paper, we
propose the first fully dynamic algorithms for efficiently maintaining TCO in presence of node churn such that both the average
and maximum node degrees stay provably low. The main challenge of dynamic maintenance is to efficiently overcome departure
of nodes central to topic-connectivity. This is attained by maintaining sets of shadow nodes so that all links adjacent to a failed
node can quickly be replaced by adding links among shadow nodes.

Compared to constructing TCOs from scratch, the proposed algorithms exhibit two important advantages: When a node
joins or leaves, topic connectivity is restored much faster, and changes to the overlay are incremental so that existing links do
not need to be torn down. We corroborate these advantages by extensive evaluations on typical workloads with up to 2 000
nodes and 200 topics under 1 000 rounds of churn.
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I. INTRODUCTION

Publish/subscribe (pub/sub) systems constitute an attractive choice as communication paradigm and messaging substrate
for building large-scale distributed systems. Many real-world applications are using pub/sub for message dissemination,
such as application integration across data centers [1], financial data dissemination [2], RSS feed aggregation, filtering, and
distribution [3]. Besides these applications, many standards have adopted pub/sub as part of their specifications, including
WS Notifications, WS Eventing, the OMG’s Real-time Data Dissemination Service, and the Active Message Queuing
Protocol.

In pub/sub, subscribers express their interests in receiving messages through subscription messages and publishers
disseminate publication messages. In this paper, we focus on the topic-based pub/sub model. In a topic-based system,
publication messages are associated with topics and subscribers register their interests in receiving all messages published
on topics of interest.

In a distributed pub/sub system, so called pub/sub brokers, often connected in a federated manner as an application-level
overlay network, efficiently route publication messages from data sources to sinks. The overlay properties directly impacts
the system’s performance and the message routing cost. Constructing a high-quality broker overlay is a key challenge and
fundamental problem for distributed pub/sub systems that has received attention both in industry [1], [4] and academia [5],
[6], [7], [8], [9], [10].

In [5], the notion of topic connectivity was defined, which informally speaking means that all nodes (i.e., pub/sub brokers)
interested in the same topic are organized in a connected dissemination sub-overlay. This property ensures that nodes not
interested in a topic never need to contribute to disseminating information on that topic. Publication routing atop such
overlays saves bandwidth and computational resources otherwise wasted on forwarding messages of no interest to the node.
It also results in smaller routing tables.

Apart from topic-connectivity, it is imperative for an overlay network to have a low node degree. It costs a lot of resources
to maintain adjacent links for a high-degree node (i.e., monitor the links and the neighbors [5], [7]). Besides, for a typical
pub/sub system, each link would have to accommodate a number of protocols, service components, message queues and so
on. While overlay designs for different applications might be principally different, they all share the strive for maintaining
bounded node degrees, whether in DHTs [11], wireless networks [12], or for survivable network design [13].

Unfortunately, the properties of topic-connectivity and low node degree are at odds with each other. Intuitively, a sparse
overlay is unlikely to be topic-connected while a dense overlay is sub-optimal with respect to the node degree. This trade-off
has been explored in a number of approaches for constructing a topic-connected overlay while minimizing the average or
maximum node degree [5], [6], [7], [10]. Notably, all these state-of-the-art algorithms are designed to construct the overlay
from scratch.

To the best of our knowledge, this work is the first to consider the problem of dynamically maintaining a pub/sub overlay
in presence of churn such that topic-connectivity is guaranteed to be quickly restored and the degrees stay provably low.
While it is possible in principle to rebuild the overlay from scratch after each node join or leave, this approach is not deemed



practical: The above state-of-the-art algorithms have a high running time cost of O(|V |2|T |) where |V | is the number of
nodes and |T | is the number of topics. Furthermore, tearing down all existing links and establishing potentially different
links anew is also prohibitively expensive.

The main challenge of dynamic maintenance is to overcome the departure of a node central to topic-connectivity. In this
situation, additional edges need to be created in order to mend the overlay and restore topic-connectivity. If the protocol
considers the entire set of potential edges that can be added, its running time will be problematic. If the protocol only
considers a small subset of edges for addition, those edges may turn out suboptimal thereby significantly increasing the
degrees.

To overcome this challenge our solution builds and maintains a set of backup nodes for each node in the overlay. This
set is constructed when a node joins and incrementally updated as needed, e.g., when a backup node leaves. When a node
v leaves, we calculate the shadow set of v, which is the union of v’s neighbors and v’s backup set. Only edges between the
nodes in shadow set are considered for addition towards restoring topic-connectivity. We present and analyze alternative ways
to calculate the backup set in such a way that (a) the incremental computation needed for restoring topic-connectivity is fast,
(b) the degrees are kept provably low, and (c) the backup sets can be efficiently updated. In particular, these requirements
imply that a node should not be assigned as a backup for a high number of other nodes. More generally, backups for different
nodes should be distributed as uniformly as possible for a given input.

We consider the performance of the proposed dynamic algorithms and provide analytical bounds for the running time as
well as maximum and average degrees. Specifically, we show that under assumptions that hold for typical pub/sub workloads,
the incremental dynamic algorithms run much faster while the produced degrees remain close to those of the state-of-the-art
static algorithms. Apart from the theoretical analysis, we conduct comprehensive experiments under a variety of characteristic
pub/sub workloads with up to 2 000 nodes and 200 topics under 1 000 rounds of churn. The results show that our dynamic
algorithms run hundreds of times faster and reshuffle hundreds of times fewer edges at each churn round compared to the
static baseline algorithms, at the cost of an insignificant increase in maximum and average degrees.

II. RELATED WORK

Significant body of research in distributed pub/sub systems has been considering construction of the underlying overlay
topology so that network traffic is minimized (e.g [5], [6], [8], [9], [10], [7], [14], [15], [16]). Topic-connectivity is a required
property in [17], [18], [16]. It is an implicit requirement in [19], [20], [9], [21], [14], which aims to reduce the number of
intermediate overlay hops for a message using a variety of techniques.

The goal of constructing a topic-connected overlay while minimizing node degrees, has resulted in the formulation of
various research problems: MinAvg-TCO for average degree [5], MinMax-TCO for maximum degree [6], and Low-TCO
for both average degree and maximum degree simultaneously [7]. Greedy approximation algorithms have been proposed for
these problems [5], [6], [7]. Chen et al. [10], [15] present a divide-and-conquer overlay design method, which significantly
reduces the time and space complexity of constructing a low fan-out topic-connected overlay. All of these algorithms are
static and construct the overlay from scratch.

While resilience to churn has been considered in a large number of decentralized architectures for pub/sub, only a few
of those ([18], [16]) focus on providing topic-connectivity and low fan-out. Both [18] and [16] achieve topic-connectivity
with high probability in a failure-free run. Their empirical evaluation also shows that the resulting overlay tends to have
moderate degrees. In contrast, our work provides a deterministic guarantee of topic-connectivity and provable bounds on the
degrees due to adopting a principally different less decentralized implementation approach.

Patent [22] proposes a simple dynamic strategy of applying the algorithm in [5] towards mending topic-connectivity of
the overlay. This approach has a high runtime cost similar to that of the static algorithm of [5]. Moreover, [22] has no
guarantee to bound the maximum node degree in the produced overlay.

III. BACKGROUND

Let V be the set of nodes and T be the set of topics. Each node v ∈ V is interested in a set of topics, denoted as
v.topics ∈ T . We say that a node v is interested in topic t if and only if t ∈ v.topics; we also say that v subscribes to t,
or t is subscribed by v. |v.topics| is called the subscription size of node v. Further, the subset of nodes that are interested
in topic t ∈ T is denoted by t.nodes , i.e., t.nodes = {v|t ∈ T ∧ t ∈ v.topics}.

An overlay network G(V,E) is an undirected graph over the node set V with the edge set E ⊆ V ×V . Given an overlay
network G(V,E) and a topic t ∈ T , we say that a sub-graph Gt(Vt, Et) of G is induced by t if Vt = {v ∈ V |t ∈ v.topics}
and Et = {(v, w) ∈ E|v ∈ Vt ∧w ∈ Vt}. An overlay G is called topic-connected if for each topic t ∈ T , the sub-graph Gt

of G induced by t contains at most one topic-connected component (TC-component). A topic-connected overlay (TCO) for
given V , T , and E is denoted as TCO(V, T,E).

In this paper we focus on exploring TCO problems in dynamic environments. To exemplify our algorithm design and
analysis under churn, we target at the optimizing the static properties of Low-TCO, which is formally defined as follows:

In [7], the authors defined the static problem of constructing a TCO from scratch while minimizing both maximum and
average node degrees.



Definition 1. Low-TCO(V, T ): Given a set of nodes V in which each node subscribes to a subset of topics from T , construct
a topic-connected overlay TCO(V, T,E) while minimizing both maximum and average node degrees.

Onus et al. [7] proposed the Low-ODA algorithm for Low-TCO. Low-ODA is specified in Alg. 1 and operates in a
greedy manner as follows: It starts with an empty set of edges and iteratively adds carefully selected edges one by one
until topic-connectivity is attained. The edge selection rule, instantiated by findLowEdge() (line 5 of Alg. 2), is based on
a combination of two criteria: node degree and edge contribution, which is defined as reduction in the number of topic-
connected components caused by the addition of the edge to the current overlay. Edge contribution for an edge e is denoted
as contrib(e). Function findLowEdge() uses a parameter ρ to tread the balance between average and maximum node degree,
and it makes a weighed selection between two candidate edges:

• e1 s.t. contrib(e1) is maximum among Epot ;
• e2 s.t. contrib(e2) is maximum among the subset of Epot in which all edges increase maximum degree of G(V,Enew ∪

Enew ) minimally.
If contrib(e1) is greater than ρ · contrib(e2), edge e1 is added; otherwise e2 is added.

Algorithm 1 Low-ODA for Static Low-TCO
Low-ODA(I(V, T ))
Input: I(V, T )
Output: A topic-connected overlay TCO(V, T,Enew )

1: Enew ← constructLowEdges(V, T, ∅, V × V )
2: return TCO(V, T,Enew )

Algorithm 2 Overlay Construction for Low-ODA
constructLowEdges(V, T,Ecur , Epot )
Input: V , T , Ecur , Epot

// Ecur : Set of current edges that exist in the overlay
// Epot : Set of potential edges that can be added

Output: Edge set Enew that combined with Ecur , forms a TCO

1: Enew ← ∅
2: for all e(v1, v2) ∈ Epot do
3: contrib(e)←|{t ∈ T |t ∈ v1.topics ∧ t ∈ v2.topics∧

v1, v2 belong to different TC-components for t in G(V,Ecur )}|
4: while G(V,Enew ∪ Ecur ) is not topic-connected do
5: e ← findLowEdge(ρ)
6: Enew ← Enew ∪ {e}
7: Epot ← Epot − {e}
8: for all e(v1, v2) ∈ Epot do
9: contrib(e) ← update the contribution of a potential edge e as the reduction on the number of TC-components which would result from the

addition of e to G(V,Enew ∪ Ecur )
10: return Enew

IV. DYNAMIC TOPIC-CONNECTED OVERLAY PROBLEMS

In the dynamic TCO problem, we are given a set T of topics, initial set V0 of nodes and their subscriptions, and an
already constructed TCO for T and V0 with low degrees. We are further given a sequence ∆ = (δ1, δ2, ..., δk, ...) of churn
rounds, each round incurring a single change to the set V of nodes and their subscriptions. Our goal is to incrementally
maintain the TCO in presence of churn:

Definition 2. Dyn-Low-TCO(TCO0(V0, T, E0),∆):
Given a solution TCO0(V0, T, E0) for an initial Low-TCO instance I0(V0, T ), and a sequence ∆ of churn rounds,
dynamically maintain TCOk with minimal maximum and average node degrees for each round δk of churn.

Various types of churn can be defined for ∆ in Dyn-Low-TCO, such as node joining or leaving, changes in the
subscriptions, as well as combined changes. In this paper, we focus on joins and leaves and assume that at each δk ∈ ∆
only one node joins or leaves the overlay. Observe that this type of churn is more challenging to handle compared to minor
changes in the subscriptions. Besides, algorithms for this basic type of churn can be extended to other types, like churn
concerning batch alterations.
Dyn-Low-TCO can be tackled by applying the static Low-ODA to re-construct the TCO “from scratch” for each new
instance at churn round δk. However, it is certainly better from the practical standpoint to preserve existing edges and
only incrementally add edges as necessary. This is because establishing a new edge is a relatively costly operation that
entails construction of new routing tables. Furthermore, incremental computation of additional edges is more efficient than
re-computation of the entire overlay.



V. DYNAMIC ALGORITHMS FOR TCO PROBLEMS

A. Static Low-ODA as a building block

In this section, we analyze the greedy Low-ODA in greater detail and derive new results for the algorithm when running
on a partially constructed overlay. Static Low-ODA is employed as a building block for our dynamic algorithms and serves
as baseline in our experimentation.

Given a Low-TCO instance I(V, T ), let us denote DMIN (V, T ) (or DMIN (I)) as the minimum possible maximum node
degree of any TCO for instance I , and dMIN (V, T ) (or dMIN (I)) as the minimum possible average degree of any TCO for
I . Furthermore, we denote the maximum degree of a graph G(V,E) by D(V,E), and the average degree by d(V,E). More
specifically,

DMIN (V, T ) = min
TCO(V,T,E)

D(V,E)

dMIN (V, T ) = min
TCO(V,T,E)

d(V,E)

In [7], Alg. 2 is the only entry point for Alg. 1. This means that Ecur is always equal to ∅ and Epot to V × V upon
the invocation of Alg. 2. For Dyn-Low-TCO, we need to apply the greedy algorithm on a partially constructed overlay.
Therefore, we have to extend the analysis of Low-ODA for the case when Ecur ̸= ∅ and Epot = (V ×V )\Ecur . Let Enew

be the set of edges returned by Alg. 2, then the following lemma holds:

Lemma 1. If invoked on (V, T,Ecur , Epot ) such that Epot = (V × V )\Ecur , and findLowEdge() is parameterized with ρ, then Alg. 2 has the
following properties:
(a) the running time is O(|Epot ||T |) = O(|V |2|T |),
(b) G(V,Ecur ∪ Enew ) is topic-connected for instance I(V, T ),
(c) the maximum node degree D(V,Ecur ∪ Enew ) is bounded by O(D(V,Ecur ) +

|V |
ρ

DMIN (V, T ) · log(|V ||T |)),
(d) the average node degree d(V,Ecur ∪ Enew ) is bounded by O(d(V,Ecur ) + ρ · dMIN (V, T ) · log(|V ||T |)).

Proof: (a) The improvement of the running time from O(|V |4|T |) to O(|V |2|T |) was proven in Lemma 7 in [23].
(b) The correctness of Alg. 2 follows directly from the termination condition in line 4 of Alg. 2.
(c) The approximation ratio for maximum node degree stems from Theorem 2 in [7] and the proof is similar to the one

for Lemma 3 in [15].
(d) The approximation ratio for average node degree follows exactly the same proof for Theorem 1 in [7].

B. Naive Dynamic Algorithms for Dyn-Low-TCO

Given Alg. 2 and Lemma 1 for the static Low-TCO, we first consider a set of Naive Dynamic Algorithms, called
NaiveDynAlg, for handling incremental and decremental churn. NaiveDynAlg is also based on a greedy heuristic giving
rise to similar properties as for Alg. 2. We include the design and analysis of these algorithms below to illustrate their
weaknesses that motivate the need for more advanced algorithms, presented thereafter.

Alg. 3 and Alg. 4 present NaiveDynAlg. The intuition behind these algorithms is that we need to determine a set of
new edges Enew , that in conjunction with the current edge set Ecur , produces a TCO for the new instance. The algorithms
start with a non-empty Ecur set and compute the potential edge set Epot containing all possible edges. Then, they iteratively
select edges one by one from Epot using findLowEdge() until a new TCO is obtained. Note that only those of the topics
that become disconnected as a result of churn need to be considered, i.e., v′.topics ∈ T .

Algorithm 3 Naive Algorithm for Single Node Join
constructOverlayOnJoinNaively(TCOcur (V, T,Ecur ), v′)
Input: current overlay TCOcur , and joining node v′

Output: TCOnew (V ′, T, Enew ): new TCO that contains v′

1: V ′ ← V ∪ {v′}
2: Epot ← {e(v′, u)|u ∈ V ′}
3: Enew ← constructLowEdges(V ′, v′.topics, Ecur , Epot )
4: return TCOnew (V ′, T, Ecur ∪ Enew )



Algorithm 4 Naive Algorithm for Single Node Leave
constructOverlayOnLeaveNaively(TCOcur (V, T,Ecur ), v′)
Input: current overlay TCOcur , and leaving node v′

Output: TCOnew (V ′, T, Enew ): new TCO that excludes v′

1: V ′ ← V − {v′}
2: Ecur ← Ecur − {(v′, u) ∈ Ecur}
3: Epot ← V ′ × V ′ − Ecur

4: Enew ← constructLowEdges(V ′, v′.topics, Ecur , Epot )
5: return TCOnew (V ′, T, Ecur ∪ Enew )

Alg. 3 and Alg. 4 follow the design of the greedy algorithm for Low-TCO given in Sec. V-A. The correctness, running
time and approximation ratio properties for our NaiveDynAlg can be established by adapting the results of Lemma 1.

Lemma 2. Alg. 3 and Alg. 4 have the following properties:
(a) the running time is O(|Epot ||v′.topics|),
(b) G(V ′, Ecur ∪ Enew ) is topic-connected for the new instance I′,
(c) the maximum node degree D(V ′, Ecur ∪ Enew ) is bounded by O(D(V,Ecur ) +

|V ′|
ρ

DMIN (V ′, v′.topics) · log(|V ′||v′.topics|)),
(d) the average node degree d(V ′, Ecur ∪ Enew ) is bounded by O(d(V,Ecur ) + ρ · dMIN (V ′, v′.topics) · log(|V ′||v′.topics|)).

If the base TCOcur is constructed with Alg. 1, then Alg. 3 and Alg. 4 achieve the same approximation ratios as the
greedy algorithm for the static case with regard to both maximum and average node degrees. However, the running time
as given by Lemma 2 is not insignificant: |Epot | = O(|V ′|) for node joining and |Epot | = O(|V ′|2) for node leaving,
respectively. For node leaves, Alg. 4 takes O(|V ′|2|T |) time, which is asymptotically identical to running static Alg. 1 that
constructs the overlay from scratch. Besides, the naive dynamic overlay construction requires complete knowledge of all
nodes. These shortcomings motivate the development of new algorithms.

C. Shadows and Primary-backup Strategy
In this section, we present the key concepts and design elements of new dynamic algorithms for Dyn-Low-TCO.
According to Lemma 2, the time complexity of NaiveDynAlg is O(|Epot ||v′.topics|), in particular, O(|V ′||T |) for node

join and O(|V ′|2|T |) for node leave. The number of nodes, and thus the size of the potential edge set, turns out to be the
principal factor for the time complexity of the TCO construction algorithms. Based on this observation, we try to reduce
the size of the node set involved in the construction step.

When node v′ is joining or leaving, in contrast to computing Epot with V ′ as its domain (Line 2 of Alg. 3 and Line 3 of
Alg. 4), it is possible to re-attain topic-connectivity by only adding links between a selected node subset. Formally speaking,
we define the shadow set as the subset of nodes that are employed for overlay construction upon node churn.
Definition 3 (Shadow set). Given an instance of Dyn-Low-TCO(TCO0(V0, T, E0),∆), the shadow set (or shadows) for
a churn round δ ∈ ∆, is a subset of nodes from V ′ that are chosen in the overlay construction step for the new Low-TCO
instance I ′(V ′, T ), where V ′ = V ∪ {v′} for joining and V ′ = V \{v′} for leaving.

The shadow set S can be regarded as a sample of nodes that is representative of specific characteristics for the entire
node population V ′. Taking topic-connectivity into account, it is always safe (but not necessarily efficient) to set shadow set
as the complete node set V ′. However, there might exist many other choices for the shadow set with much fewer nodes.
In the case that node v′ is leaving, one candidate for the shadow set is the neighbor set around the leaving node v′, i.e.,
v′.neighbors . Observe that to re-attain topic-connectivity it is sufficient to add links among v′.neighbors to the existing
overlay. This can be done very efficiently since v′.neighbors is usually much smaller than the complete node set V ′, but
the node degrees of v′.neighbors would usually be increased significantly in the output TCO. The trade-off between the
runtime cost and the quality of the output TCO can be balanced by selecting the shadow set in between v′.neighbors and
V ′, which will be discussed in more detail in Section V-G.

In order to efficiently compute the shadow set upon churn, each node v ∈ V continuously maintains a subset of nodes
as its backup set, denoted as v.backups . A node u ∈ v.backups is referred to as a backup node (or backup) for v, and
|v.backups| is called v’s backup degree.

As illustrated in Fig. 1, when v′ is leaving, the backup set, in conjunction with the neighbor set, forms the shadow set S
to repair the “broken” TCO. The backup set for node v ∈ V should preserve the following desirable properties:

1) each backup node u shares at least one topic with v:

u.topics ∧ v.topics ̸= ∅, ∀u ∈ v.backups (1)

2) all topics subscribed by v are covered by its backups:

v.topics ⊆
∪

u∈v.backups

u.topics (2)



Figure 1. Node v′ is leaving from the overlay, and a low fan-out TCO is restored by adding edges {(v3, v4), (v9, v11), (v3, v9)} among the shadow set
S, where v′.backups = {v1, v4, v11} and S = v′.neighbors ∪ v′.backups = {v3, v9, v1, v4, v11}.

Thanks to the notions of shadow set and backup set, we design a “primary-backup” strategy for handling node leaves:
Step I, build a subset of backup nodes for each node v ∈ V in the base TCO in advance;
Step II, when a node v′ leaves, repair the overlay “locally” among the shadow set, which is v′.backups ∪ v′.neighbors;
Step III, update backups for those nodes that previously choose the departed node v′ as a backup.

To allow efficient update of backups in the third step, each node v ∈ V needs to keep a list of nodes for which it serves
as backup. We call this list the primary set of node v, denoted as v.primaries:

v.primaries = {u|v ∈ u.backups}, v ∈ V

A node u ∈ v.primaries is referred to as one of v’s primary nodes (or primaries), and |v.primaries| is called v’s primary
degree.

Struct 5 encapsulates the node and its meta information required for our problem formulation: the set of subscribed topics,
the neighbor set, the backup set and the primary set. Our new dynamic algorithms will be based on this data structure for
nodes.

Struct 5 Extended Definition of NODESTRUCT
NODESTRUCT(v): extended encapsulation of a node and its field information
◦ topics: the subscribed topics of the node
◦ neighbors: the node’s neighbors in the TCO
◦ backups: the node’s backups in the TCO
◦ primaries: the set of nodes that choose this node as backup

Step I is specified in Alg. 6, which builds backup set and associated primary set for each node v ∈ V .

Algorithm 6 Step I: Build Backups for TCO Nodes
buildBackupsForTCO(TCO(V, T,E))
Input: TCO
Output: backups (and primaries) built for each v ∈ V
1: for all node v ∈ V do
2: buildBackupsAt(v)

The trade-off and design principles for building backups at each node is discussed in Section V-G. Before digging into
buildBackupsAt(v) for v ∈ V in Line 2 of Alg. 6, we consider Steps II and III and show how shadows can efficiently
support TCO construction under node churn.

D. Dynamic Node Leave Algorithms with Shadows
Step II is accomplished by Alg. 7. The algorithm repairs TCO in two phases. First, it computes the shadow set S as

the union of the neighbor set and the backup set which is determined at Step I, and then computes Epot as the cartesian
product of S. Second, it repairs the TCO by applying Alg. 2 on Epot and considering only the subset of topics that are
disconnected.

Step III is specified Alg. 8. After repairing TCO on v′’s departure, the algorithm updates the fields of backups and
primaries for affected nodes.



Algorithms at Steps I and III do not impact topic-connectivity of the overlay, and can operate off-line under node
leaving. The responsiveness of TCO construction under node leaving only depends on the efficiency of Step II. Lemma 3
is established for the correctness, running time and approximation ratios for our Alg. 7 at Step II.

Algorithm 7 Step II: Repair TCO for Node Leave
repairOverlayOnLeaveByShadows(TCOcur (V, T,Ecur ), v′)
Input: current overlay TCOcur , and leaving node v′

Output: TCOnew (V, T,Enew ): new TCO that excludes v′

1: S ← v′.neighbors ∪ v′.backups
2: Ecur ← Ecur − {(v′, n)}
3: Epot ← S × S
4: Enew ← constructLowEdges(S, v′.topics, Ecur , Epot )
5: V ← V ′\{v′}
6: return TCOnew (V ′, T, Ecur ∪ Enew )

Algorithm 8 Step III: Update Backups after Node Leave
updateBackupsOnLeave(v′)
Input: joining node v′

Output: backups (and primaries) re-built for u ∈ v′.primaries
1: for all primary node u ∈ v′.primaries do
2: buildBackupsAt(u)

Lemma 3. Alg. 7 has the following properties for a node leave round:
(a) the running time is O(|S|2|v′.topics|),
(b) G(V ′, Ecur ∪ Enew ) is topic-connected for the new instance I′,
(c) the maximum node degree D(V ′, Ecur ∪ Enew ) is bounded by O(D(V,Ecur ) +

|S|
ρ
DMIN (S, v′.topics) · log(|S||v′.topics|)),

(d) the average node degree d(V ′, Ecur ∪ Enew ) is bounded by O(d(V,Ecur ) + ρ · dMIN (S, v′.topics) · log(|S||v′.topics|)).

E. Node Join Algorithms with Shadows
Similarly to the primary-backup strategy for node leaving, the strategy for node joining can be presented using three steps:
Step I, when v′ joins, build the backup set for v′ using nodes in the base TCO ;
Step II, repair the overlay “locally” among the shadow set, which is v′.backups ∪ {v′};
Step III, update backups and primaries.

Fortunately, at the churn round of node joining, there is no need for update backups and primaries, as required for node
leaving.

Algorithm 9 Step I: Build Backups for Node Join
buildBackupsOnJoin(v′)
Input: joining node v′

Output: backups built for v′, primaries updated for u ∈ v′.backups
1: buildBackupsAt(v′)

Algorithm 10 Step II: Repair TCO for Node Join
repairOverlayOnJoinByShadows(TCOcur (V, T,Ecur ), v′)
Input: current overlay TCOcur , and joining node v′

Output: TCOnew (V, T,Enew ): new TCO that contains v′

1: V ′ ← V ∪ {v′}
2: S ← v′.backups ∪ {v′}
3: Epot ← S × {v′}
4: Enew ← constructLowEdges(S, v′.topics, Ecur , Epot )
5: return TCOnew (V ′, T, Ecur ∪ Enew )

Alg. 9 builds backups and corresponding primaries for the newly coming node v′.
Alg. 10 repairs the TCO for the base overlay TCOcur plus a new joining node v′. The algorithm operates in two phases:

First, it computes a shadow set S by combining the joining node and its backup set, which is built by Alg. 9 at Step I, and



then it sets the potential edge set as {(v′, u)|u ∈ S}. Second, it repairs the TCO by applying Alg. 2 while only considering
the shadow nodes including v′.

Both Step I and II contribute to re-achieving topic-connectivity for node joining. However, observe that the runtime
complexity of Alg. 9 is of a smaller order of magnitude compared to that of Alg. 10. Lemma 4 is established for the
correctness, running time and approximation ratios for our dynamic algorithms for node joining.

Lemma 4. Alg. 10 has the following properties for a node join round:
(a) the running time is O(|S|2|v′.topics|),
(b) G(V ′, Ecur ∪ Enew ) is topic-connected for the new instance I′,
(c) the maximum node degree D(V ′, Ecur ∪ Enew ) is bounded by O(D(V,Ecur ) +

|S|
ρ
DMIN (S, v′.topics) · log(|S||v′.topics|)),

(d) the average node degree d(V ′, Ecur ∪ Enew ) is bounded by O(d(V,Ecur ) + ρ · dMIN (S, v′.topics) · log(|S||v′.topics|)).

F. Analysis of Dynamic Shadow Algorithms under Churn
Alg. 6, 7, 8, 9 and 10 are named Shadow Dynamic Algorithms for the Dyn-Low-TCO problem, short for ShadowDynAlg.

In this section, we analyze the performance of ShadowDynAlg under a sequence of churn ∆ = (δ1, δ2, ..., δk, ...).
We assume that each node churn round δk only results in an insignificant change between instances Ik−1(Vk−1, T ) and

Ik(Vk, T ). Specifically,

DMIN (Vk, T ) = O(DMIN (Vk−1, T )), ∀δk (3)
dMIN (Vk, T ) = O(dMIN (Vk−1, T )), ∀δk (4)

Equations (3) and (4) are realistic in pub/sub, but not guaranteed for some corner cases. In [10], we constructed an example
such that a single node join results in a significant difference for the minimum average node degree up to Θ(|V |) times.
Similarly, the departure of a node may cause a “earthquake” effect on the node degrees of the optimal TCO. Fortunately,
our experimental findings in section VI show that for typical pub/sub workloads, such situations virtually never occur in
practice.

Another assumption that we make is: For each churn round δk involving a node vk
′, the shadow set Sk can be found such

that the minimal possible degrees for instance I(Sk, vk
′.topics) formed by the Shadow set are not asymptotically larger

than the minimal possible degrees for instance I(Vk, T ). This is reasonable because we can always set Sk = Vk. Formally,

DMIN (Sk, vk
′.topics) = O(DMIN (Vk, T )) (5)

dMIN (Sk, vk
′.topics) = O(dMIN (Vk, T )) (6)

Using Lemma 3 and 4, the following bounds on the maximum and average degrees of the overlay produced by
ShadowDynAlg can be derived.

Lemma 5. Given an instance of the dynamic TCO problem Dyn-Low-TCO(TCO0(V0, T, E0),∆), where ∆ =
(δ1, δ2, ..., δk, ...) is composed of an intermixed sequence of single node joins and leaves, suppose TCO0 is constructed by
the static Alg. 1, and assume that at each churn round δk equations (3), (4), (5) and (6) are satisfied. Then for any δk,
ShadowDynAlg outputs TCOk(Vk, T, Ek) such that

D(Vk, Ek) = O(
|Vk|
ρ

DMIN (Vk, T ) · log(|Vk||T |)) (7)

d(Vk, Ek) = O(ρ ·DMIN (Vk, T ) · log(|Vk||T |)) (8)

Proof: We prove equation (7) by induction on k. Similar techniques can apply to the proof of equation (8).
Basis case: k = 0, TCO0 is constructed by the static Alg. 1; equation (7) immediately holds (Theorem 2 in [7]).
Inductive step: Assume equation (7) is valid when k = l − 1(≥ 0). We will show that it is also valid for k = l.

D(Vl, El)

= O(D(Vl−1, El−1) +
|Sl|
ρ

DMIN (Sl, v
′
l.topics) · log(|Sl||v′l.topics|)) // by Lemma 3 and 4

= O(
|Vl−1|

ρ
DMIN (Vl−1, T ) · log(|Vl−1||T |)) +O(

|Sl|
ρ

DMIN (Sl, v
′
l.topics) · log(|Sl||v′l.topics|)) // by inductive hypothesis

= O(
|Vl|
ρ

DMIN (Vl, T ) · log(|Vl||T |)) +O(
|Vl|
ρ

DMIN (Vl, T ) · log(|Vl||T |)) // by equation (3) and (5)

= O(
|Vl|
ρ

DMIN (Vl, T ) · log(|Vl||T |))

Therefore, under realistic and reasonable assumptions, ShadowDynAlg will dynamically maintain a TCO whose
maximum and average node degrees are asymptotically identical to those of the TCO output by static Alg. 1.



G. Building Shadows

We now consider the problem of the initial construction of backup sets. It is easy to show that a backup set that satisfies
equations (1) and (2) is equivalent to a set cover where v′’s topics is the universe of ground elements that are supposed to
be covered by the topic set of backup nodes. Classical algorithms for the minimum weight set cover problem are capable of
producing a small but feasible backup set. With regard to runtime cost, small cardinality is desired for backup set, because
the number of backups directly impacts the size of the shadow set, and thus the time complexity of ShadowDynAlg
(Lemma 3 and 4).

On the other hand, equations (5) and (6) express that a sufficiently large backup set is preferred for ensuring the quality
of the output TCO: a larger backup set means a large shadow set S, and therefore a higher probability for the instance
(S, v′.topics) to approximate I ′(V ′, T ) with regard to maximum and average node degrees in the TCO.

We consider the notion of coverage factor for tuning the size of the backup set, and seeking the balance between time
complexity of overlay maintenance and the quality of the output TCO.

Given a Low-TCO instance I(V, T ) and a node subset U ⊆ V , for topic t ∈ T that is subscribed by some node in U ,
denote t.nodes|U = {u|u ∈ U ∧ t ∈ u.topics}. The coverage factor for U , denoted as λ|U (or λ), is the minimum size of
the subscriber node set within U for any topic t ∈ T :

λ|U = min
t∈T

∣∣∣∣t.nodes|U ∣∣∣∣
The coverage factor is a positive integer (λ ≥ 1) such that each topic of interest is covered at least λ times.

The coverage factor selection exhibits the tradeoff between the running time and node degrees: On one side, λ = 1
minimizes the size of backup set, and running time, but leads to a severe influence on the node degrees, especially since
equations (5) and (6) are not likely to hold with a small shadow set. On the other side of the spectrum, if we choose
the coverage factor to be a large value such that all nodes of V ′ has to be included in the backup set, then the behavior
of ShadowDynAlg becomes identical to that of NaiveDynAlg. According to our experiments in subsection VI-A, an
increase in λ beyond 3 only marginally improves the node degrees of the TCO under churn. The backup set for λ = 3 is
significantly smaller than the complete node set itself so that we choose 3 as the default value for λ.

Alg. 11 and 12 provide two different approaches to build the backup set for a particular node v with specified coverage
factor λ. To ensure the coverage factor of the backup set, basic approximation algorithms for the minimum weight set
cover are executed λ times, and the generated backup set is the union of λ disjoint feasible set covers that approximate the
minimum.

Minimum weight set cover is known to be NP-hard, but approximation algorithms for this problem are well studied.
Basically, there are two efficient approximation algorithms for minimum weight set cover: 1) greedy algorithm [24], and
2) primal-dual algorithm [25]. These two approximations serve as foundations to build a λ-backup-set in Alg. 11 and 12
respectively.

Algorithm 11 Greedy Algorithm to Build Backups
buildBackupsGreedilyAt(v, λ)
Input: node v, coverage factor λ
Output: backups built for v, and primaries updated for w ∈ v.backups
1: v.backups ← ∅
2: repeat
3: Trest ← v.topics
4: Vcan ← V \({v} ∪ v.backups)
5: while Trest ̸= ∅ ∧ Vcan ̸= ∅ do
6: Vcan ← {u|u ∈ Vcan ∧ u.topics ∩ Trest ̸= ∅}
7: for all node u ∈ Vcan do
8: weight(u) = |u.neighbors|+ |u.primaries|
9: node w ← argminu∈Vcan

weight(u)

|u.topics ∩ Trest |
10: v.backups ← v.backups ∪ {w}
11: w.primaries ← w.primaries ∪ {v}
12: Trest ← Trest − w.topics
13: λ← λ− 1
14: until λ = 0



Algorithm 12 Primal-Dual Algorithm to Build Backups
buildBackupsByPDAt(v, λ)
Input: node v, coverage factor λ
Output: backups built for v, and primaries updated for w ∈ v.backups
1: v.backups ← ∅,
2: repeat
3: Trest ← v.topics
4: for all node u ∈ V − ({v} ∪ v.backups) do
5: weight(u) = |u.neighbors|+ |u.primaries|
6: while Trest ̸= ∅ do
7: topic t ← randomly pick an uncovered topic from Trest

8: Vcan ← {u : t ∈ u.topics ∧ weight(u) > 0}
9: node w ← argminu∈Vcan weight(u)

10: v.backups ← v.backups ∪ {w}
11: w.primaries ← w.primaries ∪ {v}
12: Trest ← Trest − w.topics
13: for all node u ∈ Vcan do
14: weight(u)← weight(u)− weight(w)
15: λ← λ− 1
16: until λ = 0

Alg. 11 applies the greedy set cover algorithm [24]. It follows a commonly intuitive criterion in choosing node from
V ′, towards construction of a feasible backup set: always choose the next node w which provides the minimum average
weight over uncovered topics that would be covered by w (line 9 of Alg. 11). This greedy algorithm is proven to achieve
a log approximation ratio compared to the optimum solution for the minimum weight set cover problem. Along with its
polynomial time complexity, greedy is usually the method of choice for many practical applications. However, this greedy
algorithm does not fit into our dynamic TCO settings, in which a number of set cover problems for each backup set need
to be taken care of together. Greediness tends to aggregate backup burdens to small portion of bulk nodes that subscribe to
a large number of topics. A small number of bulk nodes would serve as backups for a large number of primaries; while the
majority of lightweight nodes bear very low primary degree. Fairness is lost to a large extent in this case, and it is against
our target of load balancing; the impact of accumulated sub-optimality would become increasingly severe as more and more
churn occurs.

Alg. 12 uses another another approximation algorithm for minimum weight set cover, which is thought of as an instance
of primal-dual method. The algorithm proceeds in an iterative manner: each time randomly pick an uncovered topic t, and
then choose node w as a backup which has the minimum weight (lines 7-9 of Alg. 12). The primal-dual algorithm yields a
f -approximate solution for minimum weight set cover where f is the maximum frequency of any element. The approximation
ratio of primal-dual is higher than that of the greedy set cover algorithm. However discouraging this approximation ratio may
seem, in practice the primal-dual algorithm still achieves high quality solutions on many instances of minimum weight set
cover. Moreover, the primal-dual algorithm integrates randomness into greediness, and effectively reduces the “monopoly”
of bulk subscribers, which renders the greedy set cover algorithm inferior in our dynamic TCO environment (see evaluation
in subsection VI-A).

We decide to leverage on the primal-dual algorithm towards building and updating the backup set in Step I and III. An
empirical comparison is shown in Section VI-A.

VI. EVALUATION

We implemented all algorithms in Java and evaluated them under a variety of experimental settings. We use Low-ODA
as a baseline because it is the only known polynomial time algorithm that achieves a sub-linear approximation ratio on both
average and maximum node degrees. Parameter ρ is chosen to be 3 as suggested in [7].

In our experiments, the base instance I0(V0, T ) was initialized with |V0|=2000, |T |=200 and |v.topics| ∈ [10, 90], where
the subscription size of each node follows a power low. Each topic t ∈ T is associated with a node with probability pt,∑

t∈T pt=1 (i.e., each node subscribes to t with a probability pt). The value of pt is distributed according to either a
uniform, a Zipf (with α=2.0), or an exponential distribution. According to [18], these distributions are representative of
actual workloads used in industrial pub/sub systems today. The Zipf distribution is chosen because Liu et al. [3] show it
faithfully describes the feed popularity distribution in RSS feeds (a pub/sub-like application scenario) and the exponential
distribution is used because it was convincingly applied in stock-market monitoring scenarios for modelling the popularity
of stock in the NYSE [26].

All dynamic behavior of the algorithms is evaluated over 1 000 rounds of churn. For each churn round, a join or leave
is generated with probability 0.5. The subscriptions of joining nodes follow the same distribution as those of the nodes in
|V0|.



A. Building Backups Greedily vs. by Primal-dual
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Figure 2. Building backups greedily
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Figure 3. Building backups by primal-dual
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Figure 4. TCO properties under churn
We first compare different algorithms for building primary-backups. Given the same instance I0(V0, T ), Alg. 11 and

Alg. 12 are used to build backups with λ=3 at Step I. Fig. 2 and Fig. 3 show the output of both primary-backup schemes
under a uniform distribution as a function of the subscription size, respectively. As shown in the figures, both greedy and
primal-dual algorithms produce small-sized backup sets compared to the complete node set V0: 1.1% of |V0| for the greedy
algorithm and 2.8% of |V0| for primal-dual, averaged across all nodes. In general, the backup degree is linearly proportional to
the subscription size for both greedy and primal-dual algorithms. However, the distribution of primaries differs considerably
between both algorithms. The primaries produced by the greedy algorithm are skewed and follow an exponential shape:
42.9% of all nodes have less than 5 primaries, while the highest primary degree of a single bulk subscriber peaks at 581.
At the same time, the distribution of backups produced by the primal-dual algorithm is well-balanced, and the shape of
the dependency is linear: the lowest primary degree is 21 and the highest is 59. These results confirm our observations in
Section V-G about the side effect of greediness on the primary assignment and the fairness introduced by randomness in
the primal-dual scheme.

We also compare both backup construction algorithms in terms of the evolution of overlay properties under churn. As
shown in Fig. 4, both maximum and average node degrees increase as the TCO instance evolves with node churn. However,
overlay quality for Shadow Dynamic utilizing the greedy algorithm degrades noticeably, i.e., at δ1000, the maximum node
degree becomes 84. On the other hand, when backups are built by primal-dual, both maximum and average degrees keep a
steadily low growth rate.

Results presented in Fig. 2, 3 and 4 substantiate our choice of primal-dual for building backups.

B. Impact of Coverage Factor
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Figure 5. Impact of different coverage factors

Next, we explore the impact of λ on the output and performance of the Shadow Dynamic Algorithm. Given an initial input
I0(V0, T ) where |V0| = 2000 and |T | = 200, and a sequence of 1 000 rounds of node joins and leaves, ShadowDynAlg is



evaluated for four different values of the coverage factor (λ = 1, 2, 3, 4). Fig. 5 shows that, as λ increases, DShadow decreases,
and its growth rate with respect to node churn decreases. The differences in maximum node degrees and their growth rates
also decrease with successive coverage factors. For example, under δ1000, DShadow|λ=1 = 31, DShadow|λ=2 = 25, and
DShadow|λ=3 = DShadow|λ=4 = 24. When λ ≥ 3, the difference is insignificant. This experiment confirms the validity of
choosing a relatively small coverage factor as noted in Section V-G.

C. Performance Under Sequences of Node Churn
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Figure 6. Overlay evolution under churn
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Figure 7. Comparison of running time ratios
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Figure 8. Comparison of repair ratios

We now demonstrate the scalability, efficiency and robustness of our ShadowDynAlg under node churn.
Fig. 6 depicts a comparison between Shadow, Naive and Low-ODA algorithms as the instances evolve with the random

churn sequence ∆. The figure shows that ShadowDynAlg and NaiveDynAlg output similar TCOs with regard to
maximum and average node degrees, which are slightly higher than DLow and dLow. However, the differences are insignificant:
DShadow −DLow ≤ 5.5, and dShadow − dLow ≤ 0.798 on average over the entire sequence of churns.

Furthermore, the average node degrees of our dynamic algorithms (both Shadow and Naive) do not degrade significantly
under churn; the maximum node degree increases slowly like a step function. The figure shows that, from churn δ1 to δ1000,
DShadow(= DNaive) increases from 13 to 22, a rate of 0.9%.

Fig. 7 depicts the running time ratio of our ShadowDynAlg against Low-ODA as a function of the size of shadow
set for different joins and leaves in the churn sequence, i.e., each dot in the figure reflects the shadow size at one of the
churn rounds and the time ratio for that round. We plot the NaiveDynAlg against Low-ODA and set the shadow size of
the NaiveDynAlg to the same value as for ShadowDynAlg at the same churn round, since the NaiveDynAlg does not
have a shadow set.

As shown in Fig. 7, ShadowDynAlg is considerably faster than NaiveDynAlg both for node joins and leaves. On
average, the running time ratio against Low-ODA is around 0.014% for Shadow (and 0.043% for Naive) under joins
and 1.78% for Shadow (and 14% for Naive) under leaves. The runtime cost for the NaiveDynAlg can be as much as
61.6% of that for Low-ODA. More specifically, it takes Low-ODA 18.76 seconds on average to compute a new TCO
at each churn round; NaiveDynAlg takes 7.93 milliseconds for a join round, and 2575 milliseconds for a leave round.
Yet, ShadowDynAlg only takes 2.69 milliseconds for a join round, and 333 milliseconds for a leave round. This can
be explained by different shadow sets, and accordingly, different potential edge sets for the Shadow and Naive Dynamic
Algorithms. The shadow set S is much smaller than the complete node set V ′; the ratio is 1.59% on average and 6 4.97%
in the worst case in our experiments.

Finally, we present the repair ratio as a metric to show the non-intrusiveness of our algorithm in dynamic TCO settings.
We refer to the number of edges that an algorithm alters (either adds or deletes) in order to evolve TCOk−1 to TCOk at
churn round δk as the repair edge number. The repair ratio is the ratio of repair edge number to the number of edges in
the base overlay, i.e. |Ek−1|. Note that edges shared by both TCOk−1 and TCOk do not contribute to the values of repair
edge number and repair ratio. Fig. 8 compares the repair ratios of ShadowDynAlg and Low-ODA as a function of the
subscription size of churn node for different churn rounds in the given ∆ sequence. The repair ratio of ShadowDynAlg
is significantly lower than that of the static Low-ODA: The average repair ratio of Low-ODA is 9.4%, 11.3% for joins
and 7.5% for leaves while the ratio of ShadowDynAlg is 0.068% for joins and 0.17% for leaves. In other words, after
computing the TCO, Low-ODA has to perform 610 edge additions and deletions on average, to migrate from the old
TCOk−1 to the new TCOk. The average number of required edge changes for ShadowDynAlg is 4.83 for a join round,
and 12.24 for a leave round.



VII. CONCLUSIONS

We present a fully dynamic algorithm, ShadowDynAlg, for the new problem of Dyn-Low-TCO. ShadowDynAlg
dynamically maintains an approximate solution such that, under realistic assumptions about typical pub/sub workloads,
the approximation ratio for both maximum and average degree is asymptotically identical to that of state-of-the-art static
algorithms. We have presented an extensive experimental evaluation of the algorithms. Our proposed ShadowDynAlg is
demonstrated to efficiently and robustly maintain a TCO with low degrees.
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