
Foundations for Highly Available Content-based
Publish/Subscribe Overlays
Young Yoon, Vinod Muthusamy and Hans-Arno Jacobsen

Department of Electrical and Computer Engineering, University of Toronto

Abstract—Content-based publish/subscribe overlays offer a
scalable messaging substrate for various event-based distributed
systems. In an enterprise environment where service level agree-
ments (SLAs) are strictly enforced, maintaining high availability
and efficiency of the broker overlay is critical. To support these
requirements, a set of three primitive operations are proposed
to allow arbitrary transformations of an overlay to an optimal
one, and two additional primitives are developed to enable on-
demand adjustments when there are permanent or transient
failures. Both sets of primitive operations minimize disruption
by preserving message delivery guarantees even as the overlay
topology changes, requiring no overhead when the overlay is not
being modified, operating on a fixed neighborhood of brokers
regardless of the size of the overlay, and completing quickly
under a variety of conditions.

I. INTRODUCTION

Distributed content-based publish/subscribe overlays pro-
vide a powerful messaging substrate that are employed in
a wide variety of applications including RSS filtering [26],
stock-market monitoring [28], network management and
monitoring [12], [21], algorithmic trading with complex event
processing [18], [25], distributed business process execu-
tion [19], and business activity monitoring [12]. In many of
the aforementioned enterprise applications, high-availability is
a crucial requirement as service disruptions can be costly to
the business.

High availability needs to be considered at every layer
of the application stack, including the physical network and
application architecture, but in the context of this paper,
high availability refers to concerns related to the overlay net-
work. Both functional requirements, such as message delivery
guarantees and ordering semantics, as well as non-functional
properties, such as short message delivery delays are relevant
when it comes to the design of the messaging overlay.

Moreover, availability requirements must be maintained
despite variations to the application workloads or system
resources. A common approach to accommodate these changes
is to adjust or reconfigure the overlay network in some way.
For example, a broker in the overlay that crashes unexpectedly
can be substituted with a replacement broker. Similarly, when
a broker becomes overloaded due to an unexpected message
burst, a replica of the broker can be quickly provisioned to
share some of the load. Later, when the load subsides, one of
these replicas can be removed. In this paper, such localized
replication and consolidation of brokers are referred to as on-
demand changes to the overlay.

The overlay may also be adjusted in a more deliberative
manner. For example, an organization’s policies may require

B2

B3

B4

B5 B6

B7
B1

P
P P

S S S

P
(a) Long path lengths between clients

B2

B3

B4

B5 B6

B7
B1

P
P P

S S S

P
(b) Shorter path lengths between clients

Fig. 1. Example of a planned transformation of the overlay

a broker to be removed from the overlay for maintenance
purposes, such as to apply security patches. This requires the
overlay network to be seamlessly rewired around the broker
to be removed without affecting the operation of the overlay.
More drastic changes to the overlay may also be necessary to
optimize the network for enduring changes to the application
workload. For instance, consider the overlay in Fig. 1(a) in
which an application workload has evolved such that there
is now heavy traffic among clients at brokers B1, B6, and
B7. Paths between these brokers are between 3 and 5 hops
in the current overlay, but an overlay optimization algorithm
could determine that the overlay in Fig. 1(b) would result in
a lower average message paths for this workload [2]. This
paper classifies such purposeful transformations of the broker
topology as planned changes to the overlay.

This paper develops a set of foundational primitive opera-
tions to carry out both planned and on-demand modifications
of the broker overlay. The primitives for the former are
sufficient to realize arbitrary reconfigurations of the topology,
and those for the latter are flexible and agile enough to address
permanent broker failures as well as transient processing
(matching) overloads, or input and output link bottlenecks.

Regarding the planned overlay transformation, existing
works have focused on algorithms to devise a new overlay
with various optimization criteria including minimizing the
number of brokers in the overlay to reduce cost, optimizing
path lengths or network latencies, controlling node degrees, or
providing sufficient processing and network capacities [2], [9],
[15], [20]. A significant limitation, however, is that these works
have largely neglected the practical issues with migrating an
existing deployed overlay to the new one while minimizing
the disruption to the service even as the overlay is being
transformed. The primitives proposed in this paper therefore
now provide the practical means to make use of existing
optimal overlay design algorithms on real, running systems.

As for adjustments to the overlay to repair permanent
or transient failures, the traditional approach is to deploy
a set of replicas that continuously synchronize their states

in anticipation of failure [4], [11], [17], [23], [27], [32].
We provide primitives to support a fundamentally different
model whereby a replica for a faulty broker is deployed
only on-demand. Such a model can be more cost-effective
than having an over-provisioned system. Fig. 2 shows how
the on-demand primitives can be used to grow or shrink
overlays adaptively. This on-demand model, however, brings

. . .
Faulty Broker

Replica

Neighbor Broker

Fig. 2. On-demand adjustment of pub/sub overlays.

with it several challenges that impede the direct adoption of
traditional replication approaches. For example, by the time
replication is deemed necessary, the broker being replaced is
not responsive enough, and thus its state is not available for
direct replication. Instead, our protocols exploit the soft state
nature of the broker routing tables and reconstruct a faulty
broker’s state from that of its neighbors. Another challenge is
that the replication solutions should impose minimal overhead
until replication or consolidation is required. The protocols
proposed in this paper, for instance, only require knowledge
of a broker’s overlay neighbors be maintained in an external
directory service. This information is relatively static and
cheap to collect compared to the much more frequent routing
state updates and data messages flowing through the network.
Other than communicating topology information, the solutions
developed here impose negligible overhead to a normally
functioning system both before replication is required and after
it completes, so that existing routing algorithms can operate
at full speed.

To better understand the disruptions both the planned and
on-demand primitives need to avoid, this paper formalizes
consistency properties that specify invariants on message de-
livery and ordering. Another disruption concern is the timely
delivery of messages. Sometimes timeliness and consistency
can be opposing goals, and this paper proposes protocols
with novel queue management techniques that can tradeoff
one goal for the other. Finally, the protocols should scale to
large broker overlays and so all the primitives are designed
to always involve a small, fixed neighborhood of brokers so
any disruption is short and localized to small portion of the
network.

This paper makes the following contributions: (1) Sec. II
first formalizes both functional and non-functional notions of
disruptions in a pub/sub overlay. The primitives developed are
designed to satisfy these properties. (2) Then in Sec. III, a
set of three primitives are designed to carry out arbitrarily
complex transformations of an overlay by incrementally al-
tering a small neighborhood of broker in the overlay. This
incremental approach minimizes disruptions to the system, and
is largely seamless to most of the overlay. (3) In Sec. IV,
two on-demand overlay adjustment primitives are presented:
replication and consolidation. A number of implementations
of these primitives are developed that provide tradeoffs among
the disruption properties from Sec. II. (4) Finally, Sec. V offers

an experimental evaluation of the planned and on-demand
protocols in a real system under a variety of workloads.

II. DEFINITION OF DISRUPTION

The disruption of service caused by the overlay transforma-
tion is defined as violation of functional and non-functional
requirements. This section defines the properties in order to
guide the design of the transformation primitives for a non-
disruptive pub/sub service.

A. Functional requirements
To formally capture functional properties that can be vi-

olated by the overlay transformation, this section formulates
consistency in terms of the publications delivered to a pair of
subscribers.

In the definitions, the notation p ≺ p′ refers to the case
where two publications p and p′ were published by the same
publisher, and that p was published before p′.

Property 1. Strong Complete Delivery: Consider a subscriber
s1 that has issued subscriptions (at any time) and has received
matching publication set P1, and that publications p and p′

appear in P1, where p ≺ p′. If there exists a p′′ where p ≺
p′′ ≺ p′, then p′′ must belong to P1.

Informally, the complete delivery property requires that
publications be delivered to all interested subscribers. In the
context of this paper, it can be used to ensure that the
transformation protocols do not alter the matching semantics
of an existing pub/sub routing protocol.

Property 2. Strong Ordered Delivery: For any pair of publi-
cations, p and p′, received by a subscriber, where p ≺ p′, the
subscriber should receive p before p′.

Informally, the ordered delivery property ensures publica-
tions from any given publisher are not delivered out of order
to interested subscribers.

This paper will refer to Properties 1 and 2 as strong
consistency properties. The individual properties are, however,
orthogonal in that a system may support either property, both,
or neither.

This paper seeks to develop transformation protocols that
can be easily integrated into existing pub/sub systems. Specif-
ically, there is no assumption that the routing protocol tolerates
failures, and so publications can be lost, violating the strong
delivery property. It becomes necessary then to relax the
requirements for replacing a faulty broker through on-demand
replication. Our on-demand replication primitives, therefore,
accept inconsistencies arising from publications sent to the
faulty broker before its failure was detected. The relaxed
requirements are expressed in Properties 3 and 4, which are
weaker forms of Properties 1 and 2, respectively.

Property 3. Weak Complete Delivery: The subset of publi-
cations that do not traverse a faulty broker should satisfy
complete delivery (Property 1).

Property 4. Weak Ordered Delivery: The subset of publica-
tions that do not traverse a faulty broker should satisfy ordered
delivery (Property 2).

While the weak consistency properties ignore publications
propagating through a faulty broker, they still apply where the
paths to one or both subscribers contain the replica broker.
B. Non-functional requirements

In addition to the functional requirements defined above, it
is also important to consider non-functional notions of disrup-
tion. Thus, we introduce metrics to capture the performance
of the system as it undergoes modifications to the overlay.

The publication delivery resumption delay measures the
delay experienced by subscribers in receiving publications
due to the reconfiguration of the topology. The last message
processed time evaluates the delay in delivering all pending
messages. The operation time is the overall duration of the
overlay transformation.

Notice that these metrics are of concern to subscribers—the
perceived delay in service can potentially lead to violations
of SLAs. The metrics also reflect the cost of the overlay
transformation.

It can be a conflicting goal to satisfy both functional and
non-functional requirements at the same time. Various trade-
off scenarios are supported by our configurable primitive
operations that are explained more in detail in the following
sections.

III. PLANNED TRANSFORMATION

Over time, a given overlay G may become sub-optimal for
the current workload, and existing techniques can be used
to determine a new optimal overlay G′ [2], [9], [15], [20].
What is missing is a mechanism to incrementally migrate the
existing overlay G to the optimal one G′ without disrupting
the operation of the running system. We refer to this overlay
redesign as a planned transformation.

To support such planned transformations, this section de-
velops a set of primitive operations that allow any overlay to
be incrementally transformed to another overlay with minimal
disruption. Sec. III-A first presents the primitive operations
and proves that they are sufficient to perform any general
transformation of an overlay. The proof makes no assumption
on the overlay routing algorithms and so is applicable to
any connected acyclic overlay. Then, Sec. III-B provides an
implementation of these primitives for a class of content-based
routing overlays. The implementation focuses on minimizing
the disruption to the system by constraining the operation to
a constant set of brokers in an isolated region of the network.

A. Primitive Operations

This section proposes three primitive operations that can be
used to perform arbitrary transformations of a broker overlay.
The discussion is agnostic to the routing protocols used by the
brokers, and so the broker overlay is abstracted with a graph
G. Note that G represents the broker overlay, and does not
include the clients in the topology.

A large set of distributed pub/sub protocols assume an
acyclic topology, and we capture this by saying a graph G
is valid iff it is a connected, undirected, acyclic graph. An
operation is safe if it transforms any valid graph G to another
valid graph G′. A sequence of operations is referred to as a

Operation Description

APPEND(ni, nj) Create a new node ni and connect it to node nj . Results
in ni being an outer node in the graph.

DETACH(ni) Remove an outer node ni from the graph.
SHIFT(ni, nj , nk) Replace the link between ni and nj with one between ni

and nk , where {ni, nk} ∈ N(nj) and ni 6= nk .

TABLE I
PRIMITIVE OPERATIONS FOR PLANNED TRANSFORMATION

Operation Description

MOVE(ni, nj , nk) Similar to the SHIFT primitive, but nk may be any node.
INSERT(ni, N) Create a new node ni with links to all nodes n ∈ N .
DELETE(ni) Remove node ni from the graph.
SEQUESTER(ni, nj) Remove all links from ni except for the one to nj , where

nj ∈ N(ni). Results in ni being an outer node in the
graph.

PLACE(ni, N) Similar to the INSERT operation, but here ni already exists
in the graph.

TABLE II
COMPOSITE OPERATIONS FOR PLANNED TRANSFORMATION

plan, and the result of applying a plan P to a graph G is
another graph denoted as P (G). Also, a plan P is safe if
all the operations in it are safe. In the discussion below, the
immediate neighbors of a node n are denoted as N(n), and
nodes with only one neighbor are referred to as outer nodes.1

The three proposed primitive operations are outlined in
Table I. They can be used to add a new outer node to a graph
(APPEND), remove an outer node from a graph (DETACH),
or replace a connection to a node n with a connection to a
neighbor of n (SHIFT).

Now, we prove with Theorem 1 that the above primitives
are sufficient to perform any general transformation, given
Claim 1, Lemma 1, and Corollary 1 [31]. Also, our proof
uses the composite operations as outlined in Table II. The
implementations of these operations are expressed in terms of
other composite or atomic operations [31].

Claim 1. The primitive and composite operations are safe.

Lemma 1. Given a sequence of nodes n1, . . . , nk, there exists
a sequence of INSERT(n1,−), . . . , INSERT(nk,−) operations
to generate any valid graph G consisting of nodes n1, . . . , nk.

Corollary 1. Given a graph G, a graph GA generated by
an APPEND operation to G, and a graph GI generated by
an INSERT operation to G, there is a plan to transform GA

to GI using only the SHIFT primitive (i.e., without adding or
removing nodes).

Theorem 1. There is always a plan to transform any valid
graph G to any other valid graph G′′ using only the APPEND,
DETACH, and SHIFT primitives.

Proof: Let G′ be a graph that consists of the same nodes
as G′′.

First we prove that there is a plan P to transform G to some
G′, and then prove there is a plan P ′ to transform G′ to G′′.

Plan P is relatively straightforward: for each node n in G
but not in G′′, DELETE(n); and then for each node n not in
G but in G′′, APPEND(n, nk), where nk is some node in both

1An outer node here is with respect to the broker overlay. In particular, a
broker with clients connected to it is still an outer node if it has only one
connection to another broker.

B1

B2 B3

G'3 P'3

shift(B3,B1,B2)

G''3

G'4

B1

B2 B3

B1

B4 B3

B2

B1

B2 B3 B4

P'4

P'

Pc
4

P'4

= P'4 , P'3 , P
c
4

G''4

̂

̂

Ĝ'4 B1

B2 B3

B4

P'3
B1

B2 B3

B4

P'3(Ĝ'4)

Fig. 3. Example of induction step in Theorem 1.

G and G′′.
It remains now to be shown that there is a plan P ′ to

transform G′ to G′′, and both graphs have identical nodes.
We will show that plan P ′ exists by induction.

The induction will apply to a sequence of graphs
G′1, . . . , G

′
m, where G′k is a k-node graph, and an

INSERT(nk+1,−) operation applied to G′k generates G′k+1.
Also, G′m = G′ and hence G′ consists of the nodes
n1, . . . , nm. By Lemma 1, this sequence of graphs exists.
Similarly, graphs G′′1 , . . . , G′′m exist, where G′′m = G′′.

Let P ′k be a plan that transforms graph G′k to graph G′′k . It
is trivial to show that P ′k exists for 1 ≤ k ≤ 3, that is, for
graphs up to three nodes.

We will now show that if P ′k exists, then P ′k+1 also exists.
Specifically, we will construct a P ′k+1 by moving node nk+1

“out of the way”, applying plan P ′k on a subgraph, and then
moving node nk+1 back to the correct position in the graph.
The plan is as follows:

1) To begin, apply SEQUESTER(nk+1,−) to graph G′k+1

to generate a graph Ĝ′k+1 where node nk+1 is now an
outer node in the graph. This operation will be referred
to as plan P̂ ′k+1.

2) Now apply P ′k, the plan for the k-node graph, on Ĝ′k+1.
This is safe because P ′k is reducible to a set of SHIFT
operations which only affect the nodes in graph G′k and
the k-node subgraph of Ĝ′k+1 is identical to G′k.

3) Finally, apply a plan P c
k+1 that transforms Ĝ′k+1 to

G′′k+1. By Corollary 1, a plan P c
k+1 exists.

So, the plan P ′k+1 consists of the sequence of plans P̂ ′k+1,
P ′k, and P c

k+1.

An example of the induction step in the above proof is
shown in Fig. 3, where a plan P ′3 to transform a 3-node graph
is used to construct a plan P ′4 to transform a 4-node graph.

In this section, we have proposed three primitive graph
transformation operations: APPEND, DETACH, and SHIFT. We
have also proven that these primitives can be used to perform
any transformation of an acyclic, connected graph. Therefore,
these primitives can be used to carry out a transformation of a
content-based pub/sub overlay as dictated by existing optimal-
overlay construction algorithms [2], [9], [15], [20].

Broker Changes to routing tables

ni
∀sub ∈ PRT where sub.lasthop = nj sub.lasthop = nk

∀adv ∈ SRT where adv.lasthop = nj adv.lasthop = nk

nj
∀sub ∈ PRT where sub.lasthop = ni sub.lasthop = nk

∀adv ∈ SRT where adv.lasthop = ni adv.lasthop = nk

nk
∀sub ∈ PRT where sub.lasthop = nj sub.lasthop = ni

∀adv ∈ SRT where adv.lasthop = nj adv.lasthop = ni

TABLE III
REQUIRED CHANGES TO BROKER ROUTING STATES FOR A

SHIFT(ni, nj , nk) OPERATION.

Note that we have only shown that a plan exists to per-
form any desired transformation, and have not provided an
algorithm to generate a plan. While there are many plans
possible for a given transformation, it is not even clear what
the optimization criteria for a plan should be. A plan may
attempt to minimize the number of primitive operations, isolate
the modifications to a portion of the network, constrain the
maximum degree of nodes in the intermediate steps, control
paths lengths between certain nodes, or maintain some other
invariant at each step. Constructing such paths is a rich avenue
for future research, but is out of the scope of this paper.

B. Implementation
Having devised the abstract primitives, this section contin-

ues with a discussion on the implementation of these primitives
in a class of content-based pub/sub overlays. In particular, we
focus on advertisement-based acyclic pub/sub overlays that
route messages by reverse path forwarding [6], [13].

Briefly, the routing paths are constructed as follows. A
publisher submits an advertisement that describes the col-
lection of publications it may publish. These advertisements
are flooded through the overlay with each broker recording
the last hop of the message in its SRT (subscription routing
table). A subscriber expresses its interest in publications with
a subscription. Each broker forwards a subscription on the
reverse path of any intersecting advertisements in the SRT,
and also records the last hop of the subscription in its PRT
(publication routing table). Finally, publications from publish-
ers are forwarded along the reverse path of subscriptions until
they are delivered to subscribers.

The APPEND and DETACH primitives constitute fundamental
operations and are already supported by existing pub/sub
systems [13]. Moreover, since they are concerned with outer
brokers that do not have any pub/sub client connected to them,
their implementations are not concerned with potential disrup-
tion. Therefore, the remainder of this section will concentrate
only on implementing the SHIFT primitive.

As defined in Table I, the SHIFT operation replaces the
connection between brokers ni and nj with one between
brokers ni and nk. To accomplish this, the routing tables at
ni, nj , and nk must be modified as outlined in Table III.

For example, consider the transformation in Fig. 4(a)
where a Broker B1 with one subscription S1 performs a
SHIFT(B1, B2, B3) operation. The figure shows the correct
routing state at each broker both before and after the operation
in terms of the last hops of the indexed subscriptions.

While Table III defines the correct final routing state after a
SHIFT operation, the protocol that implements this operation

B1

B2 B3

S1 | B1

B1

B2 B3

S1 | B3S1 | B2 S1 | B1

S1 S1

shift(B1,B2,B3)

(a) Correct before and after routing states

B1

B2 B3

S1 | B3
P

S1 | B2

(b) Publication dropped due
to incorrect intermediate
state

B1

B2 B3

S1 | B3 S1 | B1

S1

P2

P2

P2 sent @ 09:01

(propagates quickly to B1)

P2 arrives at B1 @ 09:03

P1 arrives at B1 @ 09:04

B1

B2 B3

S1 | B3 S1 | B1

S1

P1 P2B1

B2 B3

S1 | B1 S1 | B2

S1

P1

P1 sent @ 09:00

(propagates slowly)
(c) Out of order publications due to incorrect intermediate state

Fig. 4. Examples of correct and inconsistent intermediate routing states due
to a SHIFT(ni, nj , nk) operation

must ensure that the consistency properties from Sec. II-A
are preserved. The remainder of this section presents some
examples of how these properties may be violated by an
incorrect protocol, and then develops an implementation that
does satisfy the consistency properties.

1) Inconsistent states during SHIFT operation: Since it is
impossible to update the routing tables at all three brokers si-
multaneously in a distributed system, the routing configuration
depicted in Fig. 4(b) represents a possible global state while
the protocol is running. In this case, broker B3 contains a stale
last hop entry for subscription S2, and a matching publication
that arrives at broker B3 is incorrectly routed to B2 and is not
delivered to the subscriber at B1. In this example, a publication
that is not delivered to all interested subscribers violates the
strong complete consistency property.

Consider another possible sequence of intermediate states
shown in Fig. 4(c). In this case, broker B2 receives a pub-
lication P1 just before it has updated its routing tables, and
forwards P1 to broker B1 over a stale connection. After B2’s
routing state has been updated, another publication P2 from
the same publisher arrives and is correctly forward to B3 and
then to B1. Due to unpredictable delays in the network, it is
possible that P2 arrives at broker B1 before P1, violating the
strong ordered consistency property.

2) Synchronous SHIFT protocol: One way to implement
the SHIFT primitive that preserves the strong consistency
properties is to first buffer all publications at brokers ni, nj ,
and nk. Once the routing state has been updated, the buffered
publication can be forwarded according to the new routing
table entries. This is a three-phase protocol as sketched in
Algorithm 1. Because the entire protocol is always confined to
exactly three neighboring brokers in the overlay, the protocol
can finish quickly and few publications will be delayed.
Moreover, publications traversing over other brokers in the
overlay are unaffected. We evaluate the performance of this
protocol in Sec. V.

IV. ON-DEMAND ADJUSTMENT

This section proposes primitive operations for on-demand
adjustments of an overlay. These primitives can be used to
handle unexpected service disruption due to congestion and

Algorithm 1: Synchronous SHIFT protocol
Input: n, the current broker.
on receive SHIFTREQ(ni, nj , nk) do1

start buffering non-control messages;2
if n = ni then forward SHIFTREQ message to nj ;3
if n = nj then forward SHIFTREQ message to nk;4
if n = nk then send SHIFTACK(ni, nj , nk) message to nk;5

on receive SHIFTACK(ni, nj , nk) do6
modify routing state according to Table III;7
if n = nk then forward SHIFTACK message to nj ;8
if n = nj then forward SHIFTACK message to ni;9
if n = ni then send SHIFTFIN(ni, nj , nk) message to ni;10

on receive SHIFTFIN(ni, nj , nk) do11
resume processing buffered messages;12
if n = ni then forward SHIFTFIN message to nj ;13
if n = nj then forward SHIFTFIN message to nk;14
if n = nk then // nothing else to do15

failure. We develop protocols that support various combina-
tions of the properties defined in Sec. II.

Operation Description
REPLICATE(ni, nj) Replicate ni into nj to increase computing ca-

pacity.
CONSOLIDATE() Remove under-utilized replicas.

TABLE IV
PRIMITIVE OPERATIONS FOR ON-DEMAND TRANSFORMATION

A. Primitive operations

As opposed to conventional approaches of over-provisioning
an overlay where one must accept continuous synchronization
overhead [4], [11], [17], [23], [27], [32], we opt for operations
that are executed on-demand, as listed in Table IV. Similar
to the primitives for planned overlay transformation, (de-
)allocation of a replica requires only localized adjustments to
an overlay. In particular, the on-demand primitive operations
involve only the immediate neighbor brokers of the broker
to be replicated (the faulty broker). Specifically, the routing
entries of the faulty broker are populated on the newly
deployed broker (the replica) by exchanging subscriptions and
advertisements with the immediate neighbors.

As with planned overlay transformation, functional require-
ments can be violated. For example, messages that traverse one
of the redundant paths created by the replicas can be delivered
out-of-order, or messages delivered to a replica with only
partially populated routing tables can be lost. The following
sections introduce protocols to support different combinations
of consistency and performance.

B. Synchronous replication protocol

This section develops a synchronous replication protocol
that satisfies the weak consistency property defined in Sec. II.
In particular, all publications not already forwarded to the
faulty broker are delivered to all interested subscribers, and
per-source publication ordering is maintained.

The strategy underlying the synchronous protocol is to oper-
ate in two phases. First, the replica fully constructs its routing
state, during which phase the processing of user-generated
messages destined to the faulty broker is suspended. When
the routing state has been replicated, the second phase begins
where pending and newly arriving user-generated messages

Algorithm 2: Synchronous publication delivery recom-
mencement at advertisement-forwarding neighbor broker
n of replica R and faulty broker F

if receive request for advertisement from R then1
SuspendUserMessageHandling(OutputQueueR);2
move messages in OutputQueueF to OutputQueueR;3
Close(OutputQueueF);4
foreach adv ∈ SRT where adv.lasthop = F do5

adv.lasthop ← R;6
foreach sub ∈ PRT where sub.lasthop = F do7

sub.lasthop ← R;8
An ← {adv|adv ∈ SRT ∧ adv.lasthop 6= R};9
forward every adv ∈ An to R;10
send lastAdv message to R;11

if receive replication done message from R then12
ResumeUserMessageHandling(OutputQueueR);13

are redirected to the replica. The subsections below describe
each phase of the protocol in turn.

1) Synchronous replication of routing state: When con-
structing the routing state at the replica broker, it is important
to know when the routing information is complete so the
protocol can safely commence the publication delivery phase.

The replica must retrieve all advertisements, and then all
matching subscriptions, from its neighbors. For the replica to
know it has received all advertisements or subscriptions, each
neighbor sends a lastAdv or lastSub control message after it
has sent all the requested messages to the replica.

2) Synchronous publication delivery resumption: In the first
phase, once the advertisement-forwarding broker is aware a
neighbor is faulty, it suspends forwarding any messages in
the output queue to the faulty broker. When replication is
complete, in the second phase of the protocol, the broker
redirects publications originally destined for the faulty broker
to the replica instead. Algorithm 2 sketches the key portions of
the algorithm at an advertisement-forwarding broker. When the
broker learns about the replica, it internally replaces the faulty
broker with the replica by moving outstanding messages for
the faulty broker to the replica’s output queue (line 3), and then
reconfigures its routing tables to act as though advertisements
and subscriptions from the faulty broker were from the replica
instead (lines 5–8). The latter ensures new user-generated
messages are redirected to the replica. The broker also defers
sending user-generated messages until replication completes
(lines 2 and 13). This ensures the replica’s routing tables
are complete so no messages are dropped. Be aware that
only user-generated messages are suspended; advertisements,
subscriptions and control messages involved in the replication
protocol continue to propagate.

The synchronous replication protocol achieves weak con-
sistency by deferring sending publications until replication is
complete so traditional pub/sub forwarding properties can be
relied on. The weakness is the lengthy service disruption, as
subscribers receive no publications until replication is com-
plete. To address this, the next section develops an incremental
replication protocol for time-sensitive pub/sub applications.

C. Incremental replication protocol

This section presents an incremental replication proto-
col that reduces service disruption by resuming publica-
tion streams as soon as possible, while sacrificing per-
source publication ordering. Incremental replication requires
advertisement-forwarding brokers forward their publications
to the replica once they receive a matching subscription from
the replica, and the replica to cache publications for late
arriving subscriptions from subscription-forwarding brokers.
The algorithms at the publisher-forwarding broker and the
replica are outlined below.

1) Incremental publication delivery resumption: Publica-
tions destined to a broker undergoing replication are indexed,
as illustrated in Fig. 5, in a wait-ready data structure consisting
of three queue classes: a priority queue for control messages
that should be processed even during replication, a set of
wait queues per subscription, and a set of ready queues per
subscription.

Matched publications sent to the replica are indexed in
a wait queue indexed by their matching subscriptions. A
publication that matches multiple subscriptions is indexed
multiple times, as in the example of publication p1 in Fig. 5.
When a subscription arrives at the advertisement-forwarding
broker from the replica, the publications in the wait queue as-
sociated with the subscription are moved to a ready queue also
indexed by the subscription. Therefore, publications known to
match a subscription are scheduled to be forwarded as soon
as the subscription path through the replica is established.
The advertisement-forwarding broker avoids duplicates by
checking against a log of already forwarded publications. The
memory for this log, as well as the wait and ready queues can
be reclaimed once replication is complete.

Wait

S1

S2

P1

..

S3

Priority Queue

Ready

..

R
o

u
n

d
 –

ro
b

in

d
e

-q
u

e
u

e

P1

P1

P1

P1

P1

High-priority control msgs.

Low-priority user msgs.

.. ..

Fig. 5. Wait-ready queue

The memory complexity of the protocol at the
advertisement-forwarding broker is Θ(f |P |) where f is
an average fanout, i.e., the number of subscriptions a
publication matches, and P is the set of pending publications
queued in the wait-ready queue. The worst case occurs when
every publication matches every subscription, in which case
an optimization would be to simply forward the publication
upon receiving the first subscription and altogether avoid
indexing the publication in multiple wait queues. More
space-efficient data structures with smart indexing based on
actively monitored fanout trends is left for future study.

Algorithm 3: Incremental pub. forwarding at replica R

Input: N ← {n|n is a neighbor of faulty broker F}
/* Init. and handle advs as in synch. algo. */;1
if receive subscription sub from any n ∈ N then2

/* Match and forward sub as in synchronous algo3
then do the following. */;
P← matches[sub];4
matches[sub] ← ∅;5
foreach p ∈ P do6

if sub.lasthop /∈ sentTo[p] then7
forward p to sub.lasthop;8
sentTo[p] ← sentTo[p] ∪ sub.lasthop;9

if receive publication pub from any n ∈ N then10
S← {sub ∈ PRT |sub matches pub ∧ sub.lasthop 6= n};11
foreach s ∈ S do12

forward pub to s.lasthop;13
sentTo[pub] ← sentTo[pub] ∪ sub.lasthop;14

S′ ← extractMatchingSubs(pub);15
foreach s ∈ S′ where s.lasthop /∈ sentTo[pub] do16

matches[s] ← matches[s] ∪ pub;17

2) Incremental publication forwarding at replica: The sec-
ond piece of the incremental replication protocol requires the
replica to correctly send the incrementally forwarded publi-
cations to all interested subscribers. To ensure publications
are correctly forwarded towards subscriptions that arrive late,
the replica caches publications until the replication protocol is
complete.

The incremental publication forwarding algorithm at the
replica, shown in Algorithm 3, makes use of two data struc-
tures. The sentTo structure records the set of neighbors a
publication has already been forwarded to, and the matches
structure indexes the set of publications that match a given
subscription that is not already in the replica’s routing ta-
ble. The algorithm also assumes that publications incremen-
tally forwarded by advertisement-forwarding brokers include
the identifiers of subscriptions known by the advertisement-
forwarding broker to match the publication.

When an incrementally forwarded publication arrives at
the replica, as Algorithm 3 shows, the replica forwards it to
matching subscriptions in its routing tables (lines 11–14), then
records the remaining subscriptions that will match (lines 15–
17). When a subscription arrives, cached publications are
matched and forwarded (lines 4–9). The algorithm also avoids
sending duplicate publications even if multiple matching sub-
scriptions arrive from a broker.

The number of cached publications at the replica increases
with the number of subscription-forwarding brokers since it is
safe to remove the publication iff it received either a matching
publication or a lastSub from all subscription-forwarding
brokers.

Fig. 6 illustrates a replica selectively forwarding publica-
tions. Consider subscriptions S1, . . . , Sn from brokers B1,
. . . , Bn that all match publication P1 that is held in a wait
queue at broker B0. Suppose in Fig. 6(a) that subscription S1

arrives first at the replica and is forwarded to B0, adding a
routing entry at the replica along the way. Broker B0 then
forwards matching publication P1 to the replica, including the
IDs of the subscriptions that it knows to match P1, which is
the set S = {S1, . . . , Sn} in this case. In Fig. 6(a), the replica
first forwards P1 to B1, but then also notices that subscriptions

(a) First matching subscription arrives
at B0. Replica notices not all match-
ing subscriptions have arrived.

(b) When S2 arrives at the replica, it
is matched against the cached publi-
cation.

Fig. 6. Selective publication forwarding

S2, . . . , Sn were included as matching subscriptions in P1 but
these subscriptions are not yet in the replica’s routing table.
As seen in Fig. 6(b), the replica then caches P1 and records
that P1 has already been forwarded to broker B1 and that it
is awaiting matching subscriptions S2, . . . , Sn. When the next
subscription, say S2 from broker B2, arrives, P1 is matched in
the cache and forwarded to B2. In this way, the incremental
replication protocol delivers publications as soon as a matching
subscription path is established, but also ensures delivery to
late-arriving subscriptions.

The incremental replication protocol satisfies weak com-
plete delivery (Property 3) but violates weak ordering
(Property 4). Weak complete delivery is achieved because
advertisement-forwarding brokers forward exactly the same
publications to the replica they would have to the faulty broker
had it not failed; the replication protocol does not add or
remove entries from their routing tables, and they do not
drop any publications in their queues. Furthermore, the replica
broker caches publications until they are forwarded to all
known interested subscription-forwarding brokers, so it too
forwards publications to all the neighbors the faulty broker
would have (although perhaps in a different order). As for
violation of weak ordering, for the wait-ready queue in Fig. 5
the order that publications are moved from a wait queue to
a ready queue is a function of the order that subscriptions
arrive, and may not preserve the order in which publications
arrived. Furthermore, the ready queues are served in round-
robin fashion leading to further shuffling of publications.

One drawback with incremental replication is the replica
must match incoming subscriptions against advertisements in
the routing table as well as the cached publications. However,
publications cached at the replica are now one hop closer
to the subscription-forwarding broker saving computation and
communication delays. Which factor dominates will depend
on the workload.

D. Load-balancing and consolidation protocols

It is possible that the faulty broker is still functional, but
simply operating at a rate that fails to fulfill its service
level agreement. In such cases, the workload can be divided
among the faulty and replica brokers. Key techniques to
the load-balancing protocols are scheduling of the messages
among alternative replicas and re-ordering messages if strong
consistency is required.

1) Message scheduling at advertisement-forwarding broker:
Upon receipt of the subscription via the newly established
path through the replica, the advertisement forwarding broker
adds the replica to the list of candidate next hops. When the
publication delivery resumes, the advertisement broker routes
the publication to the output queue of the next hop with the
shortest queue length.

2) Message re-ordering at subscription-forwarding broker:
To avoid out-of-order messages, the subscription forwarding
broker can re-order messages to ensure the strong ordered
property is maintained. It is assumed that publications are
tagged with a publisher-specific sequence number, defining a
per-source partial order on publications. Once the subscription
forwarding broker receives at least one message from each
replica queue, all pending messages in the input queues except
the last received messages in each queue are re-ordered and
forwarded.

In the scenario where the faulty broker does not drop any
messages, both the synchronous and incremental protocols
can ensure strong complete delivery as defined in Sec. II-A.
Furthermore, the message re-ordering algorithm can provide
strong ordered delivery.2

Note that message scheduling and re-ordering can be used
in conjunction with a replica broker running any of the
replication protocols. The combinations of protocols that result
are discussed in Sec. IV-E.

3) Consolidation: Finally, consolidation of replicas is
achieved by removing the message path to the replica to
be deallocated. Specifically, the to-be-deallocated replica is
removed from the list of lasthops of every advertisement and
subscription at the neighboring brokers. Incoming messages
can continue to be routed to the remaining replicas without
any disruption. We assume that consolidation of a broker
does not overlap the replication operation. Also, consolidation
is only applicable to replicas deployed for transient failures.
Based on these assumptions, consolidation supports the strong
consistency properties as the protocol strictly prohibits any
messages going through the replica that is to be deallocated.

E. Discussion

Table V summarizes the properties satisfied by the on-
demand protocols. The basic protocol does not employ any
synchronization or incremental message forwarding, and thus
is susceptible to message failures. It, however, ensures com-
plete publication delivery for a subscription path established
via the replica. This basic protocol serves as a base line
approach to motivate the need for and evaluate the more
advanced protocols.

Each of the four consistency properties in Table V may
be required in different application scenarios. For example,
for applications that emit a stream of location updates, such
as online games, a weak complete delivery semantic may be
acceptable as any information lost due to missed events will
be obsoleted by newer events. The weak ordered semantic
may be sufficient for a system that records the bills paid by

2The proofs for these claims are detailed in [31].

Failure Protocol Weak Weak Strong Strong
Type complete ordered complete ordered

Permanent
Basic-Failover × X

n/a n/aSynch-Failover X X
Increm-Failover X ×

Transient

Basic-MS - - × ×
Synch-MS - - X ×
Increm-MS - - X ×

Basic-MS-RO - - × X
Synch-MS-RO - - X X
Increm-MS-RO - - X X
Consolidation - - X X

TABLE V
PROTOCOL PROPERTIES (MS = MESSAGE SCHEDULING, RO =

RE-ORDERING)

customers or the completion of batch processing jobs. In these
scenarios, the fact that a bill was paid or a job completed
is more important than the order in which they occurred.
As for the stronger properties, a strong complete delivery
semantic is required by a system that monitors for radioactive
alerts in a nuclear power generating station where, due to
safety regulations, it is unacceptable to miss any measurement
samples. Finally, strong ordered guarantees are essential in any
electronic commerce or financial application where reliable
transaction processing requires predictable ordering properties.
There are clearly classes of applications for which each of the
consistency properties are relevant, and each application can
choose the protocols that support the required properties and
achieve the desired performance.

Note that a replica creates a localized cyclic subgraph. How-
ever, any ill effects, such as cyclic routing, are prevented by
the selective forwarding of subscriptions and advertisements
during replication [31]. Actually, the group of replicas can be
viewed as a single virtual node with elastic capacity, which can
be used in conjunction with the planned primitives. Detailed
interaction of the replicas and the planned operations are the
subject of future study.

The extent to which publication ordering and delivery
latency are affected depends on workload characteristics that
are thoroughly analyzed in Sec. V.

V. EVALUATION

This section presents an experimental evaluation of our
protocols in order to gain insights into the runtime disruptions
that occur during the execution of the protocols. The protocols
have been fully implemented and integrated into the PADRES3

distributed content-based pub/sub system. As shown in Ta-
ble VI, all experiments were performed on a cluster of IBM
x3550 machines, with publications and subscriptions that are
synthesized to reflect real-world subscription popularity [30].

Runtime environment IBM x3550 cluster
Networking 1Gbps switched Ethernet connections
Node capacity Two Intel Xeon 5120 dual-core processors 4GB

of RAM.
Workload Publication/subscription popularity follows Zipf

distribution with degree 0.1 - 4.0; 100 - 1 000
publishers and 100 - 10 000 subscribers.

TABLE VI
EXPERIMENT SETUP SUMMARY

3Source available for download at http://padres.msrg.org.

Subscriptions consist of (attribute > value) predicates
where value follows a Zipf distribution over a default value
range of [1, 20]. Similarly, publications are (attribute, value)
pairs where value is Zipf distributed. Using the above message
templates, and by simply varying the skewness of the value
distributions and deciding whether values are skewed towards
the upper or lower portions of the range under consideration,
it is possible to control a variety of workload characteristics,
such as the generality of subscriptions and popularity of pub-
lications. For example, subscriptions whose values are biased
towards lower values are more general, that is, they express
broader interests and will match more publications. Similarly,
publications with higher values will match more subscriptions,
that is, they are more popular and are said to have a larger
fanout. Constructing more complex messages would affect the
pub/sub matching time which plays a part in our protocols.
However, this is an orthogonal concern to the design of the
protocols, and would only obscure the relationship between
the workload parameters and the resulting workload charac-
teristics, rendering the experiments more difficult to control
and analyze.

Recall that the key metrics to measure the non-functional
disruptions are publication delivery resumption delay (PDRD),
last measured publication time (LMPT), and operation time
(OT). PDRD is measured per subscription as the elapsed
time since the subscriber neighbor broker gets the connection
request from either a shifting broker or a replica broker until
this neighbor broker receives the first publication matching
the subscription through the new connection. The resumption
delay indicates how quickly the protocols resume the service
to subscribers during planned or on-demand transformations of
an overlay. The LMPT is measured as the elapsed time since
the subscriber neighbor broker gets the first publication match-
ing the subscription via the new connection until it receives
the last message pending at the advertisement-forwarding
broker since the fault occurred. Particularly, we measured
LMPT to reflect the ordering overhead imposed on on-demand
replication protocols when handling transient failures. These
experiments typically present the average delay across all
subscriptions. OT is the duration from when a protocol is
triggered to when it terminates. For the on-demand replication
protocols, OT is measured as the time it takes to replicate the
routing state of the faulty broker. Specifically, the replication
time (RT) is the elapsed time since the replica broker sends
advertisement forwarding requests to its neighbors until it
receives all the subscriptions from its neighbors.

The key metric for assessing functional disruption is the or-
der in which publications are delivered to subscribers. The or-
der is quantified using a histogram which counts the frequency
with which messages are displaced by various lengths [3].
More precisely, the publication ordering degree is a weighted
sum of the message displacement frequencies computed as∑S

D=0(S−D)f(D), where S is the length of the sequence of
messages, D is the displacement of a message, and f(D) is the
number of messages displaced by D. In the results, ordering
degree is normalized by dividing it by the maximum ordering
degree, S2, so as to allow comparisons across experiments

with different sequence lengths. If a sequence is perfectly
ordered, then the ordering degree equals to 1. The effect of
ordering degree is application-dependent.

In the following subsections, we focus more on the replica-
tion protocols as they support various level of consistencies,
and thus may exhibit more interesting runtime behavior. First,
however, we evaluate the benefit of having primitives that are
designed to be executed locally and incrementally.

a) Effect of incremental transformation: Our primitive
operations are to be locally executed in order to minimize
disruptions regardless of the scale of an overlay. In this
experiment, we consider an overlay that includes a path
of 7 brokers labeled B1 to B7 with an average of 10 000
subscriptions issued at each broker. We attempt to reconnect
B1 to B7, once by directly rewiring the topology, and once in-
crementally by executing a sequence of five SHIFT operations
(from Section III) waiting 0.5 second between each operation.
Figure 7(a) shows that each incremental execution of the
SHIFT primitive exhibits an average PDRD of approximately
4 seconds regardless of the distribution of subscriptions at the
brokers along the path. The resumption delay for the direct
wiring, however, took approximately 21.7 seconds as there
are more routing states to update. In total the incremental
plan took about 1.7 seconds longer than the direct wiring,
but causes less disruption during the execution of the plan.
In another experiment, when the subscription population is
skewed (each successive broker along the path is assigned 80%
of the remaining subscriptions in the workload), the PDRD for
the SHIFT operator varied with the number of subscriptions at
the broker. While the PDRD was sensitive to the number of
updated routing entries in that experiment, this is not always
the case. In another experiment shown in Fig. 7(b) where we
varied the path length from 3 to 9, the average PDRD remained
constant regardless of the path length of an overlay if our
planned primitives were executed incrementally and locally.
However, the average PDRD grew linearly with the path length
when direct wiring was used.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

N
u

m
b

e
r

o
f

s
u

b
s
c
ri
p

ti
o

n
s

 (
x
1

0
0

0
)

Transformation time (sec)

Incremental (Uniform)
Incremental (80:20)

Global

(a) PDRD during transformation.

 0

 10

 20

 30

 4 6 8

A
v
e

ra
g

e
 P

D
R

D
 (

s
e

c
)

Path length

Incremental
Global

(b) Effect of path lengths on PDRD.

Fig. 7. Effect of incremental transformation in a planned rewiring of an
pub/sub overlay.

In the following sections, the replication protocols are
evaluated under varying workloads in order to understand
how the protocols scale with the subscription population, the
publication fanout, the number of pending publications, the
number of neighbors, and the congestion rate.

b) Subscription population: This experiment shows the
effect of subscription populations on our replication protocols.
Fig. 8(a) plots how the PDRD varies with the number of

 0

 5

 10

 15

 20

 25

 0 5000 10000

P
D

R
D

 (
s
e

c
)

Number of Subscriptions

basic
sync
incre

(a) Resumption delay

 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 5000 10000

R
e

p
lic

a
ti
o
n

 T
im

e
 (

s
e

c
)

Number of Subscriptions

basic
sync
incre

(b) Replication time

Fig. 8. Effect of subscription population.

 1

 2

 3

 4

 200 400 600 800 1000

P
D

R
D

 (
s
e

c
)

Publication Fanout

basic
sync
incre

(a) Resumption delay

 5

 10

 15

 20

 25

 30

 35

 200 400 600 800 1000

R
e

p
lic

a
ti
o
n

 T
im

e
 (

s
e

c
)

Publication Fanout

basic
sync
incre

(b) Replication time

Fig. 9. Effect of publication fanout

subscriptions. The results show that the average PDRD grows
proportionally with the number of subscriptions to be for-
warded. Synchronous resumption is especially sensitive to the
number of subscriptions, as all the publications have to wait
until the replication completes. Incremental resumption scales
better, with linear growth in the average delay. Moreover, the
difference widens for larger subscription populations, with the
incremental protocol achieving delays of 7.3 s when there
are 10 000 subscriptions, which is 47% less than the delays
of the synchronous protocol. This shows that despite the
overhead of the incremental protocol, there is a net benefit
to resuming publication propagation as soon as an alternative
subscription path is available through the replica. The basic
replication protocol has a slightly better resumption delay than
the incremental protocol, but it drops 2% of the publications,
a result that is consistent across all the other experiments.
We also observed that the synchronous protocol provides
perfect publication ordering while the incremental protocol
only achieves a normalized ordering degree of about 0.8. Note
that the ordering is not sensitive to the number of subscriptions
but does fluctuate. This is because PADRES brokers forward
matching subscriptions in the order retrieved from the routing
table data structures, which for the purposes of this experiment
are essentially random.

Fig. 8(b) shows that replication time increases with the
number of subscriptions for both protocols. In contrast to
the delay, however, the synchronous protocol spends 31%
less time than the incremental. The latter requires both the
replica and neighbor brokers to process publications as well
as subscriptions during replication, whereas the synchronous
protocol defers processing publications until after replication
is complete. Furthermore, reorganizing pending publications
in the wait output queues is an expensive operation that the
synchronous protocol does not perform.

A side effect of increasing subscriptions is increasing pub-
lication fanout. The next experiment isolates fanout.

c) Publication fanout: In this experiment the skewness
of the publication and subscription distributions are varied

by controlling their Zipf degrees from 0.1 to 4.0. One effect
of altering these parameters is on the popularity of a given
publication, that is, the number of subscriptions it matches,
and is represented by the average publication fanout in Fig. 9.
The number of publications and subscriptions is fixed at 500
and 1000, respectively.

The results in Fig. 9(a) indicate that while the PDRD of the
incremental protocol is about 62% better than the synchronous
one, neither protocol is particularly sensitive to the publication
fanout, again due to the fact that brokers forward matching
subscriptions in essentially random order.

Fanout is controlled in two ways: by varying the skewness
of the publication and subscription Zipf distribution values,
and selecting whether to bias towards high or low values
in the range. In particular, for the lower fanout workloads
publications are biased towards being less popular (their values
are smaller, and hence fewer subscriptions match them), and
subscriptions are biased in favor of less generality (their
predicate values are larger, and hence their range of interest is
narrower). Conversely, the larger fanout workloads are skewed
towards popular publications and general subscriptions.

Other results, not shown here, indicate that, as expected,
the synchronous protocol achieves perfect ordering regardless
of the publication fanout. The incremental protocol, on the
other hand, displays more interesting behavior: although the
ordering degree (defined earlier in the evaluation setup) is as
low as about 0.6, the ordering improves and becomes more
stable with higher fanout workloads, eventually approaching
the performance of the synchronous protocol.

We also observed that the order in which subscriptions are
received by an advertisement-forwarding broker affects the
ordering of the publications. As the protocols in this paper
do not explicitly reorder subscriptions, it is the subscription
distributions that determine the likelihood with which more
general subscriptions are processed before more specific ones.

Moving on to the replication time, Fig. 9(b) shows a roughly
linear relationship between publication fanout and replication
time when incremental resumption is used. With synchronous
resumption, on the other hand, there is no overhead of
maintaining wait-ready queues at the neighbor brokers or
monitoring publication matching state at the replica broker,
and thus publication fanout has no effect on replication time.

To summarize the results in Fig. 9, regardless of the popular-
ity of publications (i.e., their fanout), the incremental protocol
delivers publications sooner than the synchronous one at the
expense of a more unordered publication stream. However, the
publication ordering under the incremental protocol becomes
more stable and approaches that of the synchronous protocol
under workloads that exhibit high publication fanout.

d) Pending publications: This experiment studies the
effects of publications that are queued while the faulty bro-
ker is being replaced with the replica. This may occur, for
example, if the failure of the faulty broker is not detected
quickly. Similar to the results from Fig. 9, in Fig. 10(a)
the incremental protocol outperforms the synchronous one in
terms of PDRD, and neither protocol is sensitive to the number
of pending publications. Combined with the insensitivity to

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t
(m

s
g

s
/s

e
c
)

Message Delay (ms)

no LB
basicMS

basicMSRO
incMS

incMSRO

(a) Throughput

 140

 160

 180

 200

 220

 240

 260

 600 800 1000

L
M

P
T

 (
s
e

c
)

Message Delay (ms)

basicMS
basicMSRO

incMS
incMSRO

(b) Last Message Publication Time

Fig. 12. Effect of congestion rate.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 200 400 600 800 1000

P
D

R
D

 (
s
e

c
)

Number of Pending Publications

basic
sync
incre

(a) Resumption delay

 0

 5

 10

 15

 20

 200 400 600 800 1000

R
e

p
lic

a
ti
o
n

 T
im

e
 (

s
e

c
)

Number of Pending Publications

basic
sync
incre

(b) Replication time

Fig. 10. Effect of pending publications.

fanout seen in Fig. 9(a), it can be inferred that the delay results
in Fig. 8(a) are due to the subscription population alone. In
terms of publication ordering, the incremental protocol only
achieves an ordering degree of about 0.8, but it is not sensitive
to the number of pending publications. Comparing results,
it is evident that the publication fanout, not the number of
subscriptions or publications, dictates the ordering degree.
Obviously, the replication time of the synchronous protocol
is unaffected by the number of pending publications, but
Fig. 10(b) shows that the replication time of the incremental
protocol grows proportionally with the number of pending
publications. This is because the processing and transmission
of these publications is interleaved with the replication of
the subscription routing state. In addition to the contention
of publications and subscriptions in the queues, there is the
overhead at the advertisement-forwarding broker of copying
pending publications from the output queue destined to the
faulty broker, and the overhead at the replica broker of record-
ing the matching subscriptions of each received publication in
order to avoid duplicates and dropped messages.

 0

 0.5

 1

 1.5

 2

 2.5

 0 3 6 9 12 15 18 21
 0

 10

 20

 30

 40

 50

 60

 70

P
D

R
D

 (
s
e
c
)

R
e
p
lic

a
ti
o
n
 t
im

e
 (

s
e
c
)

Number of subscription-forwarding neighbors

PDRD
Replication time

(a) Constant workload

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 3 6 9 12 15 18 21
 0

 3

 6

 9

 12

 15

P
D

R
D

 (
s
e
c
)

R
e
p
lic

a
ti
o
n
 T

im
e
 (

s
e
c
)

Number of subscription-forwarding neighbors

PDRD
Replication Time

(b) Proportional workload

Fig. 11. Neighboring Brokers

e) Neighboring brokers: This experiment focuses on
the incremental publication forwarding at the replica (see
Algorithm 3). First, to isolate the overhead of matching sub-
scriptions against cached publications, 1000 subscriptions are
uniformly distributed among 1 to 20 subscription-forwarding

neighbors. Contrary to expectation, the incremental protocol
does not suffer much in terms of resumption delay as shown
in Fig. 11(a). The delay increases by only 44% despite a 20
fold increase in neighbors.

To further stress the protocol, in Fig. 11(b) the workload
is increased in proportion to the number of subscription-
forwarding brokers, with 500 subscriptions per neighbor. Even
in this case, the incremental protocol scales well. Going from
1 to 20 neighbors barely doubles the delay and increases the
replication time by only a factor of five.

f) Congestion Rate: This experiment highlights the ben-
efit of message scheduling in the case of handling transient
failures. Load-balancing the publication stream to replicas
caused significant message displacement. With re-ordering
disabled, the basic and incremental protocols with message
scheduling yielded ordering degrees as low as 0.77 and 0.49,
respectively. Despite the severe message displacement, re-
ordering added little processing overhead and only showed
a 5% increase in the average LMPT. Most importantly, the
throughput, in terms of the messages per second processed
by the system, doubles when load-balancing is enabled. The
results show that the adaptive load-balancing algorithms are a
cost-effective way to manage congestion.

VI. RELATED WORK

This paper is put in context of existing techniques to pursue
high-availability.

Optimal overlay design: Related work has focused on de-
signing an optimal overlay to achieve high availability in terms
of minimizing cost, latencies, path lengths, or node degrees,
and maximizing network or processing capacities, given some
client workload [2], [9], [15], [20]. These approaches, how-
ever, do not precisely consider the implications of modifying
an overlay. Without considering the disruptiveness of the
overlay transformation primitives as we have done in this
paper, the construction of an optimal overlay in a real system
is impractical.

Overlay reconfiguration: A more practical approach is to
support dynamic reconfigurations in the overlay routing paths
in order to bypass faulty brokers [10], [16], [24], including
systems built on top of peer-to-peer networks [1], [7], [22].
However, these systems are engineered with proprietary rout-
ing and adaptation protocols and, unlike this paper, do not
attempt to extract fundamental building block operations that
can be used for arbitrary overlay transformation techniques in
a wide variety of pub/sub overlays.

Overlay replication: There is some existing work on sup-
porting redundancy in an overlay by replicating the broker
state. The Gryphon pub/sub system supports exactly-once
delivery semantics in a network where each logical broker
is in reality represented by a set of redundant physical bro-
kers [4]. A variety of techniques, including acknowledgments
and negative-acknowledgments from subscribers, and periodic
ticks from publishers (even when the publisher is silent) are
used to detect failures. This paper, however, supports on-
demand replication as opposed to over-provisioning a re-
dundant network. Subsequent work supports a subscription

propagation scheme that ensures in-order delivery without
any missing messages [32]. The solution employs distributed
virtual time vectors to detect whether a broker’s routing state is
sufficiently updated to achieve correct delivery. Like the earlier
work, this too requires redundancy in the network. Further-
more, the time vectors include elements for each subscribing
broker, and thus may not be appropriate for large loosely-
coupled broker networks. The protocols developed in this
paper, on the other hand, require knowledge only of the faulty
broker and its neighbors, and therefore their performance is
independent of the size of the overlay.

Other approaches include dynamically load-balancing
among a statically over-provisioned cluster of replica bro-
kers [8] or reserving resources and constructing redundant
paths with brokers with sufficient capacities to satisfy clients’
quality-of-service requirements [5]. These replicas must be
kept synchronized as is typical in distributed database repli-
cation [14], [29] or system-level replication [11], [23], [27],
and there is no dynamic mechanism to add replicas. By
contrast, our on-demand replication protocols are lightweight,
and impose virtually no overhead to the existing system when
replication is not taking place.

VII. CONCLUSION

In high availability applications, any modifications to a
content-based pub/sub overlay should limit disruptions to the
system, defined in this paper in terms of formalized consis-
tency properties on the in-order delivery of all messages, and
non-functional performance metrics.

To support such overlay modifications, five primitive op-
erations were proposed that allow a content-based pub/sub
broker overlay to be reconfigured for a variety of scenarios.
Proofs affirm that the planned primitives (APPEND, DETACH,
and SHIFT) are sufficient to carry out arbitrary transformations
of an acyclic broker overlay, and the implementations of these
primitives uphold the consistency guarantees, and minimize
disruption by operating on at most three brokers in the overlay
per atomic operation. Furthermore, two additional on-demand
primitive operations (REPLICATE and CONSOLIDATE) allow a
topology to be quickly adjusted around a misbehaving broker,
whether due to a permanent failure, processing loads, or input
or output queuing loads. Ten protocols implementing these
primitives offer a range of trade-offs between the degree of
consistency and performance required. For example, a publi-
cation re-delivery method based on a novel wait-ready queue
and caching mechanism allows publications to be delivered
more quickly while sacrificing in-order delivery guarantees.

Both sets of primitives require no overhead when the topol-
ogy is not being modified, and their protocols are confined to
a fixed set of brokers in the overlay making their effects on
the overall topology more predictable. Evaluations of the fully
implemented protocols running on a real system with various
content distributions support their suitability to large-scale and

time-sensitive distributed pub/sub applications.

REFERENCES

[1] I. Aekaterinidis and P. Triantafillou. Pastrystrings: A comprehensive
content-based publish/subscribe dht network. In ICDCS, 2006.

[2] R. Baldoni et al. Subscription-driven self-organization in content-based
publish/subscribe. ICAC, 2004.

[3] T. Banka, A. A. Bare, and A. P. Jayasumana. Metrics for degree of
reordering in packet sequences. In LCN, pages 333–342, 2002.

[4] S. Bhola et al. Exactly-once delivery in a content-based publish-
subscribe system. DSN, 2002.

[5] N. Carvalho et al. Scalable QoS-based event routing in publish-subscribe
systems. In NCA, 2005.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation
of a wide-area event notification service. ACM ToCS, 2001.

[7] S. Castelli, P. Costa, and G. P. Picco. Hypercbr: Large-scale content-
based routing in a multidimensional space. In INFOCOM, 2008.

[8] A. K. Y. Cheung and H.-A. Jacobsen. Load balancing content-based
publish/subscribe systems. ACM Trans. Comput. Syst., 28:9:1–9:55,
December 2010.

[9] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Constructing
scalable overlays for pub-sub with many topics.

[10] G. Cugola et al. Minimizing the reconfiguration overhead in content-
based publish-subscribe. In SAC, 2004.

[11] B. Cully et al. Remus: high availability via asynchronous virtual machine
replication. In NSDI, 2008.

[12] T. Fawcett et al. Activity monitoring: Noticing interesting changes in
behavior. In SIGKDD, 1999.

[13] E. Fidler et al. Distributed publish/subscribe for workflow management.
In ICFI, 2005.

[14] J. Gray et al. The dangers of replication and a solution. In SIGMOD,
1996.

[15] M. A. Jaeger, H. Parzyjegla, G. Mühl, and K. Herrmann. Self-organizing
broker topologies for publish/subscribe systems. In SAC, 2007.

[16] Z. Jerzak, R. Fach, and C. Fetzer. Fail-aware publish/subscribe. In NCA,
pages 113–125, 2007.

[17] R. S. Kazemzadeh et al. Reliable and highly available distributed
publish/subscribe service. In SRDS, 2009.

[18] I. Koenig. Event processing as a core capability of your content
distribution fabric. In Gartner Event Processing Summit, 2007.

[19] G. Li, V. Muthusamy, and H.-A. Jacobsen. A distributed service-oriented
architecture for business process execution. ACM Trans. Web, 4(1):1–33,
2010.

[20] M. Migliavacca and G. Cugola. Adapting publish-subscribe routing to
traffic demands. In DEBS, pages 91–96, 2007.

[21] B. Mukherjee et al. Network intrusion detection. IEEE Network, 1994.
[22] V. Muthusamy. Infrastructureless data dissemination: A distributed hash

table based publish/subscribe system. Master’s thesis, Department of
Electrical and Computer Engineering, University of Toronto, 2010.

[23] S. Osman et al. The design and implementation of zap: a system for
migrating computing environments. SIGOPS Oper. Syst. Rev., 2002.

[24] G. P. Picco et al. Efficient content-based event dispatching in the
presence of topological reconfiguration. In ICDCS, 2003.

[25] P. Pietzuch, B. Shand, and J. Bacon. Composite event detection as a
generic middleware extension. IEEE Network, 2004.

[26] I. Rose, R. Murty, et al. Cobra: Content-based filtering and aggregation
of blogs and RSS feeds. In NSDI, 2007.

[27] M. Satyanarayanan et al. Coda: A highly available file system for a
distributed workstation environment. IEEE Trans. on Computers, 1990.

[28] Y. Tock et al. Hierarchical clustering of message flows in a multicast
data dissemination system. In IASTED PDCS, 2005.

[29] M. Wiesmann et al. Understanding replication in databases and dis-
tributed systems. ICDCS, 2000.

[30] W. Y-M. et al. Subscription partitioning and routing in content-based
publish/subscribe systems. In DISC, 2002.

[31] Y. Yoon et al. On foundations for highly available content-based
publish/subscribe overlays. Technical report, Univ. of Toronto, 2010.

[32] Y. Zhao et al. Subscription propagation in highly-available pub-
lish/subscribe middleware. In Middleware, 2004.

