
Towards Highly Parallel Event Processing through
Reconfigurable Hardware

Mohammad Sadoghi, Harsh Singh, Hans-Arno Jacobsen
Middleware Systems Research Group

Department of Electrical and Computer Engineering
University of Toronto, Canada

ABSTRACT

We present fpga-ToPSS (Toronto Publish/Subscribe System), an
efficient event processing platform to support high-frequency and
low-latency event matching. fpga-ToPSS is built over reconfig-
urable hardware—FPGAs—to achieve line-rate processing by ex-
ploring various degrees of parallelism. Furthermore, each of our
proposed FPGA-based designs is geared towards a unique appli-
cation requirement, such as flexibility, adaptability, scalability, or
pure performance, such that each solution is specifically optimized
to attain a high level of parallelism. Therefore, each solution is
formulated as a design trade-off between the degree of parallelism
versus the desired application requirement. Moreover, our event
processing engine supports Boolean expression matching with an
expressive predicate language applicable to a wide range of appli-
cations including real-time data analysis, algorithmic trading, tar-
geted advertisement, and (complex) event processing.

1. INTRODUCTION
Efficient event processing is an integral part of growing num-

ber of data management technologies such as real-time data anal-
ysis [27, 5, 29], algorithmic trading [26], intrusion detection sys-
tem [5, 8], location-based services [30], targeted advertisements [9,
25], and (complex) event processing [1, 7, 2, 6, 17, 3, 24, 25, 9].

A prominent application for event processing is algorithmic trad-
ing; a computer-based approach to execute buy and sell orders on
financial instruments such as securities. Financial brokers exer-
cise investment strategies (subscriptions) using autonomous high-
frequency algorithmic trading fueled by real-time market events.
Algorithmic trading is dominating financial markets and now ac-
counts for over 70% of all trading in equities [11]. Therefore, as
the computer-based trading race among major brokerage firms con-
tinues, it is crucial to optimize execution of buy or sell orders at
the microsecond level in response to market events, such as corpo-
rate news, recent stock price patterns, and fluctuations in currency
exchange rates, because every microsecond translates into oppor-
tunities and ultimately profit [11]. For instance, a simple classical
arbitrage strategy has an estimated annual profit of over $21 billion
according to TABB Group [12]. Moreover, every 1-millisecond

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DaMoN’11, June 13, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0658-4 ...$10.00.

Figure 1: Degrees of Offered Parallelism

reduction in response-time is estimated to generate the staggering
amount of over $100 million a year [19]; such requirements greatly
increases the burden placed on event processing platform.

Therefore, a scalable event processing platform must efficiently
determine all subscriptions that match incoming events at a high
rate, potentially up to a million events per second [4]. Similar re-
quirements are reported for event processing in network monitoring
services [27].

To achieve throughput at this scale, we propose and evaluate
a number of novel FPGA-based event processing designs (Field
Programmable Gate Array). An FPGA is an integrated circuit de-
signed to be reconfigurable to support custom-built applications in
hardware. Potential application-level parallelism can be directly
mapped to purpose-built processing units operating in parallel. Con-
figuration is done through encoding the application in a program-
ming language-style description language and synthesising a con-
figuration uploaded on the FPGA chip [14]. FPGA-based solutions
are increasingly being explored for data management tasks [20, 21,
22, 28, 26].

This promising outlook has a few caveats that make the acceler-
ation of any data processing with FPGAs a challenging undertak-
ing. First, current FPGAs (e.g., 800MHz Xilinx Virtex 6) are still
much slower compared to commodity CPUs (e.g. 3.2 GHz Intel
Core i7). Second, the accelerated application functionality has to be
amenable to parallel processing. Third, the on-/off-chip data rates
must keep up with chip processing speeds to realize a speedup by
keeping the custom-built processing pipeline busy. Finally, FPGAs
restrict the designer’s flexibility and the application’s dynamism1,
both of which are hardly a concern in standard software solutions.
However, the true success of FPGAs is rooted in three distinc-
tive features: hardware parallelism, hardware reconfigurability, and
substantially higher throughput rates.

1e.g., subscription insert and delete operations are not a given.

Thus, each of our solutions is formulated as a design trade-off
between the degree of exploitable parallelism (cf. Fig. 1) versus
the desired application-level requirements. Requirements consid-
ered are: the ease of the development and deployment cycle (flexi-
bility), the ability of updating a large subscription workload in real-
time (adaptability), the power of obtaining a remarkable degree of
parallelism through horizontal data partitioning on a moderately
sized subscription workload (scalability), and, finally, the power
of achieving the highest level of throughput by eliminating the use
of memory and by specialized encoding of subscriptions on FGPA
(performance).

We experiment with four novel system designs that exhibit dif-
ferent degrees of parallelism (cf. Fig. 1) and capture different ap-
plication requirements. In our application context, achievable per-
formance is driven by the degree of parallelism (in which FPGAs
dominate) and the chip operating frequency (in which CPUs dom-
inate). Therefore, our solution design space is as follows: a single
thread running on single CPU core (PC), a single thread on a single
soft-processor (flexibility) 2, up to four custom hardware match-
ing units (MUs) running in parallel in which the limiting factor is
off-chip memory bandwidth (adaptability), horizontally partition-
ing data across m matching units running in parallel in which the
limiting factor is the chip resources and the on-chip memory (scal-
ability), and, lastly, n (where n ≥ m) matching units running in
parallel (with no memory access because the data is also encoded
on the chip), in which the limiting factor is the amount of chip re-
sources, particularly, the required amount of wires (performance).

The ability of an FPGA to be re-configured on-demand into a
custom hardware circuit with a high degree of parallelism is key
to its advantage over commodity CPUs for data and event process-
ing. Using a powerful multi-core CPU system does not necessar-
ily increase processing rate (Amdahl’s Law) as it increases inter-
processor signaling and message passing overhead, often requir-
ing complex concurrency management techniques at the program
and OS level. In contrast, FPGAs allow us to get around these
limitations due to their intrinsic highly inter-connected architecture
and the ability to create custom logic on the fly to perform parallel
tasks. In our design, we exploit parallelism, owing to the nature
of the matching algorithm (Sec. 3), by creating multiple matching
units which work in parallel with multi-giga bit throughput rates
(Sec. 4), and we utilize reconfigurability by seamlessly adapting
relevant components as subscriptions evolve (Sec. 4).

2. RELATED WORK
FPGA An FPGA is a semiconductor device with programmable

lookup-tables (LUTs) that are used to implement truth tables for
logic circuits with a small number of inputs (on the order of 4 to
6 typically). FPGAs may also contain memory in the form of flip-
flops and block RAMs (BRAMs), which are small memories (a few
kilobits), that together provide small storage capacity but a large
bandwidth for circuits in the FPGA. Thousands of these building
blocks are connected with a programmable interconnect to imple-
ment larger-scale circuits.

Past work has shown that FPGAs are a viable solution for build-
ing custom accelerated components [20, 21, 22, 28, 26]. For in-
stance, [20] demonstrates a design for accelerated XML process-
ing, and [21] shows an FPGA solution for processing market feed
data. As opposed to these approaches, our work concentrates on
supporting a more general event processing platform specifically

2A soft-processor is a processor encoded like an application run-
ning on the FPGA. It supports compiled code written in a higher-
level language, like for example C without operating system over-
head.

designed to accelerate the event matching computation. Similarly,
[22] presents a data stream processing framework that uses FPGAs
to efficiently run hardware-encoded queries (without join). Lastly,
on the path toward supporting stream processing, a novel frame-
work on how to efficiently run hardware-encoded regular expres-
sion queries in parallel on an FPGA is proposed [28]; a key insight
was the realization that the deterministic finite automata (DFA),
although suitable for software solutions, results in explosion of
space; thereby, to bound the required space on the FPGA, a non-
deterministic finite automata (NFA) is utilized. Our approach dif-
fers from [28] as we primarily focus on supporting large scale con-
junctive Boolean queries.

On a different front, a recent body of work has emerged that in-
vestigates the use of new hardware architectures for data manage-
ment systems [10]; for instance, multi-core architectures were uti-
lized to improve the performance of database storage manager [13]
and to enhance the transaction and query processing [23].

Finally, the sketch of our initial proposal was presented in [26];
our current work not only delves into much more technical depth
which was omitted from [26], it also reformulates our FPGA-based
solutions based on the extent of parallelism in each design, a formu-
lation that permits a concrete performance comparison of various
designs accompanied by a comprehensive experimental analysis.
Most importantly, this work introduces key insights and novel sys-
tem designs through introducing an effective horizontal data par-
titioning to achieve an unprecedented degrees of parallelism on
moderate-size subscription workload.

Matching The matching is one of the main computation inten-
sive components of event processing which has been well studied
over the past decade (e.g., [1, 7, 2, 6, 17, 3, 9, 24, 25]). In general,
the matching algorithms are classified as (1) counting-based [7],
and (2) tree-based [1, 25]. The counting algorithm is based on the
observation that subscriptions tend to share many common predi-
cates; thus, the counting method minimizes the number of predi-
cate evaluations by constructing an inverted index over all unique
predicates. Similarly, the tree-based methods are designed to re-
duce predicate evaluations; in addition, they recursively cut through
space and eliminate subscriptions on the first encounter with an un-
satisfiable predicate. The counting- and tree-based approaches can
be further classified as either key-based (in which for each subscrip-
tion a set of predicates are chosen as identifiers [7]), or as non-key
method [1]. In general, the key-based methods reduce memory ac-
cess, improve memory locality, and increase parallelism, which are
essentials for a hardware implementation. One of the most promi-
nent counting-based matching algorithms are Propagation [7], a
key-based method while one of the most prominent tree-based ap-
proach, BE-Tree, which is also a key-based method [25].

3. EVENT PROCESSING MODEL
Subscription Language & Semantics The matching algorithm

takes as input an event (e.g., market event and user profile) and a set
of subscriptions (e.g., investment strategies and targeted advertise-
ment constraints) and returns matching subscriptions. The event is
modeled as a value assignment to attributes and the subscription is
modeled as a Boolean expression (i.e., as conjunction of Boolean
predicates). Each Boolean predicate is a triple of either [attributei,
operator, values] or [attributei, operator, attributej]. Formally, the
matching problem is defined as follows: given an event e and a set

of subscriptions s, find all subscriptions si ∈ s satisfied by e.
Matching Algorithm The Propagation algorithm is a state-of-

the-art key-based counting method that operates as follows [7].
First, each subscriptions is assigned a key (a set of predicates) based
on which the typical counting-based inverted index is replaced by a

Figure 2: Tunning for Flexibility Design

set of multi-attribute hashing schemes. The multi-attribute hash-
ing scheme uniquely assigns subscriptions into a set of disjoint
clusters. Second, keys are selected from a candidate pool using
a novel cost-based optimization tuned by the workload distribution
to minimize the matching cost [7]. The Propagation data structure
has three main strengths which makes it an ideal candidate for a
hardware-based implementation: (1) subscriptions are distributed
into a set of disjoint clusters which enables highly parallelizable
event matching through many specialized custom hardware match-
ing units (MUs), (2) within each cluster, subscriptions are stored
as contiguous blocks of memory which enables fast sequential ac-
cess and improves memory locality, and (3) the subscriptions are
arranged according to their number of predicates which enables
prefetching and reduces memory accesses and cache misses [7].

4. FPGA-BASED EVENT PROCESSING
Commodity servers are not quite capable of processing event

data at line-rate. The alternative is to acquire and maintain high
cost purpose-built event processing applications. In contrast, our
design uses an FPGA to significantly speed up event processing
computations involving event matching. FPGAs offer a cost ef-
fective event processing solutions, since custom hardware can be
altered and scaled to adapt to the prevailing load and throughput
demands. Hardware reconfigurability allows FPGAs to house soft-
processors—processors composed of programmable logic. A soft-
processor has several advantages: it is easier to program on it (e.g.,
using C as opposed to Verilogwhich requires specialized knowl-
edge and hardware development tools), it is portable to different
FPGAs, it can be customized, and it can be used to communi-
cate with other components and accelerators in the design. In this
project, the FPGA resides on a NetFPGA [18] network interface
card and communicates through DMA on a PCI interface to a host
computer. FPGAs have programmable I/O pins that in our case
provide a direct connection to memory banks and to the network
interfaces, which in a typical server, are only accessible through a
network interface card.

In this section, we describe our four implemented designs each of
which is optimized for a particular characteristic such as flexibility
in development and deployment process, adaptability in supporting
changes for a large workload size, scalability through horizontal
data partitioning for moderate workload size, and performance in
maximizing throughput for small workload size. Most notably, the
distinguishing feature among our proposed designs is the level of
parallelism that ranges from running all subscriptions on a single
processor (flexibility) to running every subscription on its own cus-
tom hardware unit (performance).

4.1 Tuning for Flexibility
Our first approach is the soft-processor(s)-based solution (cf. Fig.

2), which runs on a soft-processor that is implemented on the Net-
FPGA platform. This solution also runs the same C-based event
matching code that is run on the PC-based version (our baseline);

Figure 3: Tuning for Adaptability Design

thus, this design is the easiest to evolve as message formats and pro-
tocols change. In order to maximize throughput of our event pro-
cessing application, we chose NetThreads [15] as the baseline soft-
processor platform for the FPGA. NetThreads has two single-issue,
in-order, 5-stage, 4-way multi-threaded processors (cf. Fig. 2),
shown to deliver more throughput than simpler soft-processors [16].
In a single core, instructions from four hardware threads are issued
in a round-robin fashion to hide stalls in the processor pipeline and
execute computations even when waiting for memory. Such a soft-
processor system is particularly well-suited for event processing:
The soft-processors suffer no operating system overhead compared
to conventional computers, they can receive and process packets in
parallel with minimal computation cost, and they have access to a
high-resolution system clock (much higher than a PC) to manage
timeouts and scheduling operations. One benefit of not having an
operating system in NetThreads is that packets appear as character
buffers in a low latency memory and are available immediately after
being fully received by the soft-processor (rather than being copied
to a user-space application). Also, editing the source and destina-
tion IP addresses only requires changing a few memory locations,
rather than having to comply with the operating system’s internal
routing mechanisms. Because a simpler soft-processor usually ex-
ecutes one instruction per cycle, it suffers from a raw performance
drawback compared to custom logic circuits on FPGAs; a custom
circuit can execute many operations in parallel as discussed next.

4.2 Tuning for Adaptability
In order to utilize both hardware-acceleration while supporting

large dynamic subscriptions on both off-chip and on-chip mem-
ories, we propose a second scheme (cf. Fig. 3). Since FPGAs
are normally programmed in a low-level hardware-description lan-
guage, it would be complex to support a flexible communication
protocol. Instead, we instantiate a soft-processor (SP) to implement
the packet handling in software. After parsing incoming event data
packets, the soft-processor offloads the bulk of the event match-
ing to a dedicated custom hardware matching unit. Unlike the
subscription-encoded matching units used in the tuned for perfor-
mance design, these matching units use low-latency on-chip mem-
ories, Block RAMs (BRAMs) available on FPGAs, that can be
stitched together to form larger dedicated blocks of memory. The
FPGAon the NetFPGAplatform [18] has 232 18kbit BRAMs which
are partially utilized to cache a subset of subscriptions. Having an
on-chip subscription data cache allows event matching to be ini-
tiated even before the off-chip subscription data can be accessed.
However, our matching algorithm leverages data locality in the
storage of dynamic subscriptions, which may be updated during run
time, in contiguous array clusters thereby exploiting burst-oriented

Figure 4: Tuning for Scalability Design

data access feature of the DDR2 (or SDRAM), off-chip memory,
while fetching the subscription data clusters. Thus, having an on-
chip subscription cache partially masks the performance penalty
(latency) of fetching the subscriptions from the off-chip DDR2mem-
ory, which is the main throughput bottleneck of our FPGA-based
event processing solution. Therefore, the maximum amount of use-
ful parallelism in this design is limited by the memory bandwidth;
in particular, no more than four custom hardware matching units
can be sustained simultaneously; any additional matching units will
remain idle because only a limited amount of data can be transfered
from off-chip memory to on-chip memory in each clock cycle.

In our design tuned for adaptability, we employ a more gener-
alized design that enables the matching units to support a dynamic
and a larger subscription workload than can be supported in our de-
signs that tuned either for scalability or performance. Our adapt-
ability design employs the BRAM-based Matching Units (BMUs)
which allows a subset of subscriptions to be stored on the on-chip
dedicated low latency BRAMs; thus making the design less hard-
ware resource intensive compared to the our pure hardware im-
plementation (tuned for performance design). Furthermore, coa-
lescing dynamic subscription data into an off-chip memory image
is achieved using the Propagation algorithm. The resulting sub-
scription data image is downloaded to the off-chip main memory
(e.g DDR2 SDRAM) while loading FPGA configuration bitstream.
Nevertheless, any hardware performance advantage promised by a
FPGA-based design soon dwindles when the data must be accessed
from an off-chip memory. We adopt two approaches to reduce the
impact of off-chip memory data access latency on the overall sys-
tem throughput. Firstly, we take advantage of high degree of the
data locality inherent in Propagation’s data structure which helps
to minimize random access latency. Secondly, to achieve local-
ity subscriptions are grouped into non-overlapping clusters using
attribute-value pair as access keys. Therefore, this data structure
is optimized for storing large number of subscriptions in off-chip
memory. In addition, we incorporate a fast (single cycle latency)
but smaller capacity BRAMs for each matching unit to store subset
of subscriptions, which helps mask the initial handshaking setup
delay associated with off-chip main memory access, i.e., the event
matching can begin against these subscriptions as soon as the event
arrives; in the meantime the system prepares to setup data access
from the off-chip DDR2 main memory.

The stepwise operation of this design is depicted in Fig. 3. Upon
arrival of an event, the SP transfers (1) the data packets to the
input queue of the system. A custom hardware submodule, the
DISPATCHER unit, extracts subscription predicates-value pairs, whi-
ch are input to hash functions to generate cluster addresses. Cluster
addresses are used to look-up the memory locations (2) of the rel-
evant subscription clusters residing both in BMU BRAMs and in
off-chip main memory. The DISPATCHER then feeds the event (3)
and previously computed cluster addresses (4) on the MU DATA

BUS (common to all BMUs). Next, the MU DRIVER unit acti-

Figure 5: Tuning for Performance Design

vates all parallel BMUs to initiate matching (5) using on-chip static
subscriptions stored in each BMU, while simultaneously queuing
up read requests for the off-chip main memory. The transfer (6)
of dynamic subscription data between the BMUs is pipelined to
avoid stalling the matching units due to data exhaustion. Finally
the match results are pushed (7) into the output queue from which
the SP transfers the results to the network interface to be sent to the
intended host(s).

4.3 Tuning for Scalability
The key property of our proposed design tuned for scalability

is the horizontal data partitioning that maximizes parallelism (cf.
Fig. 4). This design offers the ability to adjust the required level
of parallelism (which directly translates into matching throughput)
by adjusting the degree of data partitioning for a moderate size
workload, yet without significantly compromising the feature of-
fered in our adaptability design. It achieves this by fully leverag-
ing the available on-chip (BRAM) memory to partition the global
Propagation’s data structure across BRAM blocks such that each
subset of BRAMs is dedicated to each matching unit, in which
the matching unit has an exclusive access to a chunk of the global
Propagation’s structure. Unlike our adaptability design in which
the degree of parallelism is quite restricted due to the off-chip mem-
ory’s access latency, resulting in several data starved or stalled match-
ing units, this design employs matching units (BMUs) (cf. Fig. 4)
that are each provisioned with a dedicated BRAMmemory in order
to keep them fully supplied with subscription data. Therefore, the
degree of parallelism achieved is simply a function of the number
of BMUs that can be supported by the underlying FPGA. Finally,
a non-performance critical soft-processor (SP) can be employed to
update the on-chip memory tables attached to each BMU in the
design; hence, supporting dynamic subscription workload.

The overall stepwise operation of our tuned for scalability de-
sign, depicted in Fig. 4, is similar to that which occurs in the tuned
for adaptability design for steps (1) to (5), with the difference being
in the absence of the off-chip main memory used for storing the dy-
namic subscriptions. The operation and logic of the DISPATCHER

and MU DRIVER submodule is further simplified as the off-chip
memory access arbitration and data dissemination to BMUs is elim-
inated. Every BMU consists of a four-state Finite State Machine,
that upon receiving the event data (3) initiates matching by sequen-
tially fetching one subscriptions every clock cycle from the dedi-
cated BRAM memory containing the cluster starting at the address
(4) that was dispensed by the DISPATCHER unit. Since all BMUs
are ran in parallel and in sync with each other, the DISPATCHER

must dispense the next cluster address only when all BMUs have
completed matching all subscriptions in the current cluster. In fi-
nal phase (6), once all BMUs finish matching all the subscriptions’
clusters corresponding to the predicates present in the incoming
event, the final result tallying phase is initiated where matched sub-
scriptions or number of matches found are placed on the match hit

Figure 6: Evaluation Testbed

vectors and consolidated as a final result value by the DISPATCHER

unit to be transfered to SP via the output queue.

4.4 Tuning for Performance
Our final approach (cf. Fig. 5) is a purely hardware solution:

custom hardware components perform necessary steps involving
event parsing and matching of event data against subscriptions.
This method provides near line-rate performance, but also involves
a higher level of complexity in integrating custom heterogeneous
accelerators in which both the performance-critical portion of the
event processing algorithm and the encoding of subscriptions are
incorporated within the design of the matching unit logic; thereby,
completely eliminating all on- and off-chip memory access laten-
cies. Essentially, each subscription is transformed into a self-contain-
ed custom hardware unit; this subscription encoding achieves the
highest level of parallelism in our design space because all sub-
scriptions are ran in parallel.

The performance design offers the highest rate at which incom-
ing events can be matched against subscriptions, which are encoded
in the SUBSCRIPTION ENCODED MATCHING UNIT (SEMU) logic
on the FPGA. This method avoids the latency of both on and off-
chip memory access, but significantly constraints the size of the
subscription base that can be supported. A diagram of this design
is shown in Fig. 5. This setup is massively parallelized and offers
event matching at extremely high rates (i.e. one per clock cycle).

The stepwise operation of the our tuned for performance design
is depicted in Fig. 5. In this design, the soft-processor (SP) only
serves to transfer (1) the received event data packets from the net-
work interface input buffer to the input queue of the our system.
Custom hardware submodule, the DISPATCHERmodule, parses (2)
the incoming events and feeds the current event data to all the
matching units while the MU DRIVERmodule generates all the nec-
essary control signals to run all SEMUS synchronously. Each unit
is able to match all encoded subscriptions against the current event
in one clock cycle. However, subsequent clock cycles are spent in
tallying the matches and preparing the final responses (e.g. forward
address look-up or consolidating system wide match counts) that is
eventually pushed (3) into the output queue. The SP then transfers
(4) the final result from the output queue to the network interface
to be sent to the intended host(s).

5. EXPERIMENTAL RESULTS
This section describes our evaluation setup including the hard-

ware used to implement our FPGA-based event processing system
and the measurement infrastructure.

Evaluation PlatformOur FPGAbased solutions are instantiated
on the NetFPGA 2.1 [18] platform, operating at 125MHz and have
access to four 1GigE Media Access Controllers (MACs) via high-
speed hardware FIFO queues (cf. Fig. 2) allowing a theoretical
8Gbps of concurrently incoming and outgoing traffic capacity. In
addition, a memory controller to access the 64 Mbytes of on-board
off-chip DDR2 SDRAM is added. The system is synthesized to
meet timing constraints with the Xilinx ISE 10.1.03 tool and targets
a Virtex II Pro 50 (speed grade 7ns). Our soft-processor and match-
ing units run at the frequency of the Ethernet MACs (125MHz).

1x MU 4x MUs 32x MUs 128x MUs

250 7.5 5.5 5.0 3.6

1K 9.3 6.1 4.3 4.3

10K 64.0 19.0 6.8 5.4

50K 223.5 59.9 12.3 7.3

Table 1: Latency (µs) vs. the # of MUs (Scalability Design)

Evaluation & Evaluation Setup For our experiments, we used
HP DL320 G5p servers (Quad Xeon 2.13GHz) equipped with an
HP NC326i PCIe dual-port gigabit network card running Linux
2.6.26. As shown in Fig. 6, we exercised our event processing so-
lutions from the server executing a modified Tcpreplay 3.4.0

that sends event packet traces at a programmable fixed rate. Packets
are timestamped and routed to either the FPGA-based designs or
PC-based design. Each FPGA-based design is configured as one of
the solutions described in Sec. 4 and PC-based is a baseline serving
as comparison only. The network propagation delays are similar
for all designs. Both FPGA-based or PC-based designs forward
market events on the same wire as incoming packets which allows
the Event Monitor (EM), cf. Fig. 6, to capture both incoming and
outgoing packets from these designs. The EM provides a 8ns reso-
lution on timestamps and exclusively serves for the measurements.

Evaluation Workload We generate a workload of tens of thou-
sands of subscriptions derived from investment strategies such as
arbitrage and buy-and-hold. In particular, we vary the workload
size from 250 subscriptions to over 100K subscriptions. In addi-
tion, we generate market events using the Financial Information
eXchange (FIX) Protocol with FAST encoding3 .

EvaluationMeasurementsWe characterize the system through-
put as the maximum sustainable input packet rate obtained through
a bisection search: the smallest fixed packet inter-arrival time where
the system drops no packets when monitored for five seconds—a
duration empirically found long enough to predict the absence of
future packet drops at the given input rate. The latency of our so-
lutions is the interval between the time an event packet leaves the
Event Monitor output queue to the time the first forwarded version
of the market event is received and is added to the output queue of
the Event Monitor.

5.1 FPGA Performance Benefits
Packet ProcessingMeasuring the baseline packet processing la-

tency of both PC and FPGA-based solutions is essential in order to
establish a basis for comparison. When processing packets using
the PC solution, we measured an average round-trip time of 49µs
with a standard deviation of 17µs. With the NetThreads processor
on the FPGA replying, we measure a latency of 5µswith a standard
deviation of 44ns. Because of the lack of operating system and
more deterministic execution, the FPGA-based solution provides
a much better bound on the expected packet processing latency;
hence, our FPGA-based solution outperformed the PC-based solu-
tion in baseline packet processing by orders of magnitude.

Event Processing Before we begin our detailed comparison of
various designs, we study the effect of the number of matching
units (MUs) on the matching latency for our scalability design,
Table 1. As expected, as we increase the number of MUs, moving
from 1 MU to 128 MUs, the latency is improved significantly es-
pecially for the larger subscriptions workload (with chip resources
permitting). This improvement is directly proportional to the de-
gree of parallelism obtained by using a larger number of MUs.

In Table 2, we demonstrate the system latency as the subscription
workload size changes from 250 to 100K. In summary, even though
our FPGA (125MHz Virtex II) is much slower than the latest FPGA

3
fixprotocol.org

PC Flexibility Adaptability Scalability Performance

250 53.9 71.0 6.4 3.6 3.2

1K 60.7 199.4 7.5 4.3 N/A

10K 150.0 1,617.8 87.8 5.4 N/A

100K 2,001.2 16,422.8 1,307.3 N/A N/A

Table 2: End-to-end System Latency (µs)

PC Flexibility Adaptability Scalability Performance

250 122,654 14,671 282,142 740,740 1,024,590

1K 66760 5,089 202,500 487,804 N/A

10K 9594 619 11,779 317,460 N/A

100K 511 60 766 N/A N/A

Table 3: System Throughput (market events/sec)

(800MHz Virtex 6) and significantly slower than our CPU (Quad
Xeon 2.13GHz), our deign tuned for adaptability is 8x faster than
the PC-based solution on workload sizes of less than 1K and con-
tinued to improve over the PC solution by up to a factor of two
on workload of sizes of 100K. Similarly, the design tuned for per-
formance, while currently feasible only for smaller workloads due
to lack of resources on the FPGA, is 21.2x faster. Most impor-
tantly, our design tuned for scalability takes advantage of both of
our adaptability and performance designs by finding the right bal-
ance between using the on-chip memory to scale the workload size
while using the highly parallel nature of the performance design to
scale the event processing power. Thus, the scalability design is
16.2x faster than our adaptability design and is 27.8x faster than
the PC design. In addition, a similar trend was also observed for
the system throughput experiment as shown in Table 3.

Therefore, the adaptability design is limited because of slower
off-chip memory bandwidth which greatly hinders the degree of
parallelism while the performance design is limited because en-
coding the subscriptions in the logic fabric of the chip consumes
much more area than storing them in BRAM or DDR2 provid-
ing much denser storage. Finally, contrary to general perspective
that software solution cannot be utilized in hardware, the success
of our scalability design (which adapts a software-based solution)
suggests that in order to scale our solution to large subscription
workloads, certain software data structures for data placement be-
come a viable solution in conjunction with hardware acceleration
and parallelism.

6. CONCLUSIONS & DISCUSSIONS
We observe that event processing is at the core of many data

management applications such as real-time network analysis and
algorithmic trading. Furthermore, to enable the high-frequency
and low-latency requirements of these applications, we presented
an efficient event processing platform over reconfigurable hardware
that exploits the high degrees of hardware parallelism for achieving
line-rate processing. In brief, the success of our fpga-ToPSS frame-
work is through the use of reconfigurable hardware (i.e., FPGAs)
that enables hardware acceleration using custom logic circuits and
elimination of OS layer latency through on-board event processing
together with hardware parallelism and novel horizontal data par-
titioning scheme. As a result, our design tuned for performance
outperformed the PC-based solution by a factor of 27x on small
size subscription sets while our design tuned for scalability out-
performed the PC-based solution by a factor of 16x even as the
workload size was increased; in fact, this gap further widens as
workload size increases due an increased opportunity to process a
larger amount of data in parallel.

7. REFERENCES
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and

T. D. Chandra. Matching events in a content-based
subscription system. In PODC’99.

[2] G. Ashayer, H. K. Y. Leung, and H.-A. Jacobsen. Predicate
matching and subscription matching in publish/subscribe
systems. ICDCSW’02.

[3] L. Brenna, A. Demers, J. Gehrke, M. Hong, Ossher, Panda,
Riedewald, Thatte, and White. Cayuga: high-performance
event processing engine. SIGMOD’07.

[4] J. Corrigan. Updated traffic projections. OPRA, March’07.
[5] C. Cranor, T. Johnson, and O. Spataschek. Gigascope: a

stream database for network applications. In SIGMOD’03.
[6] Y. Diao, P. Fischer, M. Franklin, and R. To. Yfilter: Efficient

and scalable filtering of XML documents. In ICDE’02.
[7] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,

and D. Shasha. Filtering algorithms and implementation for
fast pub/sub systems. SIGMOD’01.

[8] A. Farroukh, M. Sadoghi, and H.-A. Jacobsen. Towards
vulnerability-based intrusion detection with event
processing. In DEBS’11.

[9] M. Fontoura, S. Sadanandan, J. Shanmugasundaram,
S. Vassilvitski, E. Vee, S. Venkatesan, and J. Zien. Efficiently
evaluating complex boolean expressions. In SIGMOD’10.

[10] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and what
we found there. In SIGMOD’08.

[11] K. Heires. Budgeting for latency: If I shave a microsecond,
will I see a 10x profit? Securities Industry, 1/11/10.

[12] R. Iati. The real story of trading software espionage. TABB
Group Perspective, 10/07/09.

[13] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-MT: a scalable storage manager for the
multicore era. In EDBT’09.

[14] I. Kuon, R. Tessier, and J. Rose. Fpga architecture: Survey
and challenges. Found. Trends Electron. Des. Autom.’08.

[15] M. Labrecque et al. NetThreads: Programming NetFPGA
with threaded software. In NetFPGA Dev. Workshop’09.

[16] M. Labrecque and J. G. Steffan. Improving pipelined soft
processors with multithreading. In FPL’07.

[17] G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to
routing, covering and merging in publish/subscribe systems
based on modified binary decision diagrams. ICDCS ’05.

[18] J. W. Lockwood et al. NetFPGA - an open platform for
gigabit-rate network switching and routing. InMSE’07.

[19] R. Martin. Wall street’s quest to process data at the speed of
light. Information Week, 4/21/07.

[20] A. Mitra et al. Boosting XML filtering with a scalable
FPGA-based architecture. CIDR’09.

[21] G. W. Morris et al. FPGA accelerated low-latency market
data feed processing. IEEE 17th HPI’09.

[22] R. Mueller, J. Teubner, and G. Alonso. Streams on wires: a
query compiler for FPGAs. VLDB’09.

[23] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. PVLDB’10.

[24] M. Sadoghi, I. Burcea, and H.-A. Jacobsen. GPX-Matcher: a
generic boolean predicate-based XPath expression matcher.
In EDBT’11.

[25] M. Sadoghi and H.-A. Jacobsen. BE-Tree: An index
structure to efficiently match boolean expressions over
high-dimensional discrete space. In SIGMOD’11.

[26] M. Sadoghi, M. Labrecque, H. Singh, W. Shum, and H.-A.
Jacobsen. Efficient event processing through reconfigurable
hardware for algorithmic trading. In VLDB ’10.

[27] D. Srivastava, L. Golab, R. Greer, T. Johnson, J. Seidel,
V. Shkapenyuk, O. Spatscheck, and J. Yates. Enabling real
time data analysis. PVLDB’10.

[28] L. Woods, J. Teubner, and G. Alonso. Complex event
detection at wire speed with FPGAs. PVLDB’10.

[29] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. In SIGMOD’06.

[30] Z. Xu and H.-A. Jacobsen. Processing proximity relations in
road networks. SIGMOD ’10.

