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ABSTRACT

In this demo, we preseripga-ToPS§Toronto Publish/Subscribe
System Family), an efficient event processing platform fighh
frequency and low-latency algorithmic trading. Our evemcess-
ing platform is built over reconfigurable hardware—FPGAs—t
achieve line-rate processing. Furthermore, our eventessiog
engine supports Boolean expression matching with an esigees
predicate language that models complex financial stratdgiau-
tonomously buy and sell stocks based on real-time finaneitl. d

1. INTRODUCTION

Algorithmic trading is a computer-based approach to execut
buy and sell orders on financial instruments such as sezs#ig.,
stocks, bonds, and options.) Financial brokers exercissiment
strategies using autonomous high-frequency algorithrading fu-
eled by real-time market events (e.g., stock & news feedgQiith-
mic trading is dominating financial markets and now accotmts
over70% of all trading in equities [5]. Therefore, as the computer-
based trading race among major brokerage firms continués, it
crucial to optimize execution of buy or sell orders at thenusec-
ond level in response to market events, such as corporate, new
recent stock price patterns, and fluctuations in currenchaxge
rates, because every microsecond translates into oppatuand
ultimately profit [5]. Consider a classical arbitrage stgpt with an
estimated annual profit o2% billion according to TABB Group [6]:
Barrick Gold stock (TSE:ABX) is trading at4$.04 a share in
Toronto while (NYSE:ABX) is trading at 4.05 in New York.
Therefore, to take advantage, a high-frequency algoritahyidriven
strategy must quickly respond by buying in Toronto and isglln
New York before the price gap closes [3]. Every 1-millisedon
reduction in response-time is estimated to generate tiggestiag
amount of over $00 million a year [10].

Algorithmic trading is naturally modeled by an event praces
ing platform in which financial news and market data are aaku
as events such asstpck= ABX, TSX,sk 40.04, NYSE
= 40.05]; while investment strategies are formulated by financial
institutions and brokers in the form of subscriptions suehstock
= ABX, TSX,sr # NYSE] or [stock= ABX, TSX,sr < 40.04].
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Therefore, a scalable event processing platform must exffiyi
find all investment strategies (subscriptions) that matdoming
market events at a high rate, up to a million market events per
second [2]. Therefore, to achieve the desired event primgpss
throughput, we propose a novel FPGA-based solution to fsigni
cantly speed up algorithm trading computations, namelykeata
event parsing and market event matching against stratayfieex-
periment with three novel approaches exploring the trdtibet-
ween flexibility in programming versus performance gainedata
processing with FPGAs (Field Programmable Gate Arrays.)

Another key realization in algorithmic trading is that geally
investment strategies are developed using extensive datgsés.
Most important, in high-frequency trading in which orders &ul-
filled in order of microseconds, a miscalculated and a rushed-
egy could result in the loss of millions of dollars within seds.
Therefore, the typical high-frequency trading strategydteto be
consistent over time, and even the highly competitive mievel
investment strategy has an average shelf life on the orakysf[6].
As aresult, many investment strategies are relatively-loregl and
are not rapidly updated. Thus, in addition to using hardvearel-
eration to improve matching and parsing, we can encode parts
all of the strategies into custom hardware blocks for sperer-
formance and seamlessly re-synthesize, on the order oftesinu
relevant components as strategies change.

Why Use FPGAs? Meeting the demand of data processing at
current network bandwidths, which has a tendency to double i
approximately 9 to 10 months (Gilders Law), is becoming éasr
ingly challenging. This up-trend of network bandwidth istglev-
ident in the trading network capacity (1-million+ messagessec-
ond) [2] which is required to support the large fraction afiing in-
volving algorithmic techniques (over 70%) on today’s masK&].
On the other hand, supply of affordable line-rate processio-
lutions is becoming scarce as the trend of up-scaling obistor
densities and higher clock frequencies in commodity CPUsas
dicted by Moore’s Law is now flattening due to the physicalitan
tions of current semiconductor fabrication technologyud;tthere
is a keen interest in the research community and compariles al
[Celoxica, Exegy, RedLine] to rely on FPGA-based computiag
lutions for applications where deterministic, multi-dbjfgprocess-
ing throughput and low-latency in forwarding of missiontical
data is required. The true success of FPGAs is rooted in thsee
tinctive features: hardware parallelism, hardware regomdibility,
and substantially higher throughput packet processing.

Parallelism & Reconfigurability The ability of an FPGA to
be re-configured on-demand into a custom hardware circulit wi
a high degree of parallelism is key to its advantage over GBUs
data and event processing solutions. Using a powerful roaté
CPU system does not necessarily increase processing raga(#\'s



Law) as it increases inter-processor signaling and megsaggng
overhead, often requiring complicated concurrency mamagé
techniques at the program and OS level. On the other handAEPG
allow us to get around these limitations due to their intamsghly
inter-connected architecture and the ability to creatéorndogic

on the fly to perform parallel tasks [11, 13]. In our design, we
exploit parallelism, owing to the nature of the matchingoaithm
(Sec. 3), by creating multiple matching units which work erp
allel with multi-giga bit throughput rates (Sec. 5), and viiize
reconfigurability by seamlessly adapting relevant compthas
investment strategies evolve (Sec. 5).

Packet ProcessingAnother benefit of an FPGA-based solution
is that there are multiple high bandwidth (giga-bit) 1/0 pithat
allow these devices to be inserted into the high data-ratausts
without added latency on the outgoing traffic. In modern serv
systems, however, there is the additional OS layer lateweshead
in moving data between input and output ports (Sec. 7).

2. RELATED WORK

FPGA An FPGA is a semiconductor device with programmable
lookup-tables I(UTs) that are used to implement truth tables for
logic circuits with a small number of inputs (on the order afo4
6 typically). FPGAs may also contain memory in the form of-flip
flops and block RAMs (BRAMSs), which are small memories (on
the order of a few kilobits), that together provide a smairatje
capacity but a large bandwidth for circuits in the FPGA. Téands
of these building blocks are connected with a programmatbég-i
connect to implement larger-scale circuits.

Past work has shown that FPGAs are a viable solution for build
ing custom accelerated components [13]. For instance,ddrhpn-
strates a design for accelerated XML processing. Work if [12
shows an FPGA solution for processing market feed data while
work concentrates on an event processing platform to aetelthe
matching computation of strategies in algorithmic tradihgstly,
[14] presents a framework to use FPGAs for data stream pseces
ing as co-processors in many-core architectures (inaju@iRUS)
while our entire architecture is built directly on FPGAs.

Matching The matching is one of the main computation inten-
sive components of event processing which has been welt stud
ied over the past decade (e.g., [1, 4]). In general, the rimajch
algorithms are classified as (1) counting-based [4], andr&d-
based [1]. The counting algorithm is based on the observatiat
investment strategies tend to share many common predithtes
the counting method minimizes the number of predicate evalu
tions by constructing an inverted index over all unique praies.
Similarly, the tree-based methods are designed to redechcate
evaluations; in addition, they recursively cut through cgpand
eliminate strategies on the first encounter with an unsaltikfipred-
icate. The counting- and tree-based approaches can berfofts-
sified as either key-based (in which for each strategy a gatsaf-
icates are chosen as identifiers [4]), or as non-key basedifil]
general, the key-based methods reduce memory access,vempro
memory locality, and increase parallelism, which are esalsrfor
a hardware implementation. The most prominent key-basachma
ing algorithm isPropagation [4].

3. EVENT PROCESSING MODEL

Subscription Language & SemanticsThe matching algorithm
takes as input an event (e.g., market event, stock feed) aed a
of subscriptions (e.g., investment strategies) and retoratching
subscriptions. The event is modeled as a value assignmextt to
tributes and the subscription is modeled as a Boolean esipres
(i.e., as conjunction of Boolean predicates.) Each Boof@adi-

cate is a triple of either [attributeoperator, values] or [attribute
operator, attributd. Formally, the matching problem is defined as
follows: given a market event and a set of financial strategies,
find all strategiess; satisfied bye.

Matching Algorithm The Propagation algorithm is a state-of-
the-art key-based counting method that operates as fol[djvs
First, each strategy is assigned a key (a set of predicatsgdb
on which a multi-attribute hashing scheme uniquely assitrate-
gies into a set of disjoint clusters. Second, keys are saldobm
a candidate pool using a novel cost-based optimizationdtinye
the workload distribution to minimize the matching cost. [4he
Propagation data structure has three main strengths which makes
it an ideal candidate for a hardware-based implementatidp:
strategies are distributed into a set of disjoint clustehictv en-
ables highly parallelizable event matching through marsces-
ized hardware matching units, (2) within each clustertsgias are
stored as contiguous blocks of memory which enables fasieseq
tial access and improves memory locality, and (3) the giiese
are arranged according to their number of predicates wiriables
prefetching and reduces memory accesses and cache migses [4

4. DESIGN OVERVIEW

Commodity servers are not
quite capable of processing
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rates. The alternative for fi- .
nancial institutions is to ac- 1
quire and maintain high cost
purpose-built network appli-
ances. In contrast, our de-
sign uses an FPGA, to sig-
nificantly speed up algorithm .
trading computations involv-  Figure 1: Soft-processor(s)-

ing market event parsing and ~ Pased implementation

market event and strategy matching. FPGAs offer a cost-effec
tive algorithmic trading solutions, since custom hardweae be
altered and scaled to adapt to the prevailing load and thmutg
demands. Hardware reconfigurability allows FPGAs to haade
processors—processors composed of programmable logic. A soft
processor has several advantages: it is easier to progeantely.,
usingCas opposed tver i | og which requires specialized knowl-
edge and hardware development tools), it is portable tersifft
FPGAs, it can be customized, and it can be used to communi-
cate with other components and accelerators in the desigthid
project, the FPGA resides on a NetFPGA [9] network interfzsrel

and communicates through DMA on a PCl interface to a host com-
puter. FPGAs have programmable 1/O pins that in our casageov

a direct connection to memory banks and to the network imtex,
which in a typical server, are only accessible through a agtw
interface card. In this section, we describe the three dedigat

we are implementing. Not described is a PC-based versioichwh
serves as baseline for our demo and experiments. It usetlyexac
the same C-based matching code as the first approach.

Tuning for Flexibility Our first approach is the Soft-processor(s)-
based solution (cf. Fig. 1), which runs on a custom soft pgoce
sor that is implemented on the NetFPGA platform. This sotuti
also runs the same C-based strategy matching code that @run
the PC-based version (our baseline); thus, this desigreigasi-
est to evolve as message formats and protocols change. én ord
to maximize throughput of our event processing applicatioa
chose NetThreads [7] as the baseline soft processor ptatfmr
the FPGA. NetThreads has two single-issue, in-order, gesté-
way multi-threaded processors (cf. Fig. 1), shown to deliwere
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throughput than simpler soft processors [8]. In a singlecor-
structions from four hardware threads are issued in a roahof
fashion to hide stalls in the processor pipeline and execoie-
putations even when waiting for memory. Such a soft progesso
system is particularly well-suited for event processindie Boft
processors suffer no operating system overhead compahio
ventional computers, they can receive and process packetsri
allel with minimal computation cost, and they have accesa to
high-resolution system clock (much higher than a PC) to mana
timeouts and scheduling operations. One benefit of not gaan
operating system in NetThreads is that packets appear eectdra
buffers in a low latency memory and are available immedyeaél

ter being fully received by the processor system (rather bang
copied to a user-space application). Also, editing the cmand
destination IP addresses only requires changing a few melmor
cations, rather than having to comply with the operatingesys
internal routing mechanisms. Because a simpler soft psocesu-
ally executes one instruction per cycle, it suffers froma parfor-
mance drawback compared to custom logic circuits on FPGAs. A
custom circuit can execute many operations in parallel.

Tuning for Performance Our second approach (cf. Fig. 2),
is a purely hardware solution: custom hardware componests p
form necessary steps involving market event parsing andhimeag
of market event data against strategies. This method psuide
highest performance, but also involves a higher level of er:
ity in integrating custom heterogeneous accelerators iotwiboth,
the performance-critical portion of the event processiggrithm
and trading strategies reside (encoded) within the desigheo
matching unit logic thereby completely eliminating all amdeoff-
chip memory access latencies. Moreover, discretizatiofinah-
cial markets means that the minimum price variation of stpoikte
prices is discretized ($0.01 in the US) such that prices eaepre-
sented as scaled integer comparisons in hardware. Thigsalto
further optimization of hardware resources to accommoduaire
matching units, that would otherwise be required to supaating
point comparisons, which is particularly cumbersome in BBG

The Hybrid Approach Due to increased complexity in the hard-
ware-only approach to support dynamic strategies andblarévent
data formats, we implemented a third scheme (cf. Fig. 3)clvhi
is a hybrid of the previous two. Since FPGAs are normally pro-
grammed in a low-level hardware-description language,oitile/
be complex to support a flexible communication protocoltdad,
we instantiate a soft processor to implement the packetlimgnid
software. After parsing incoming market event data packées
soft processor offloads the bulk of the strategy matchingdedi-
cated custom hardware matching unit. Unlike the stratemypded
matching units used in the hardware-only solution, thestelma
ing units use small low-latency on-chip memori&pck RAMs
available on FPGAs, that can be stitched together to forgetar
dedicated blocks of memory. The FPGA on the NetFPGA plat-
form [9] has 232 18kbit Block RAMs which are utilized to cache
a small subset of static strategies that do not change veeyn.of
Having an on-chip strategy data cache allows market evetttma
ing to be initiated even before the off-chip strategy datalma ac-
cessed. However, our matching algorithm leverages datditypc
in the storage of dynamic strategies, which may be updated du
ing run time, in contiguous array clusters thereby expigitburst-
oriented data access feature of the DDR2 (SDRAM), off-chéom
ory, while fetching the strategy data clusters.

IMPLEMENTATION OVERVIEW

This section provides more details of the proposed tpga-
ToPSSarchitectures: the hardware-only and hybrid implementa-
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Figure 3: Hybrid implementation
tions.

Hardware-only Implementation Ourfpga-ToPS$®ardware-only
implementation offers the highest possible rate at whiclning
market events can be matched against investment stra{sgies
scriptions) that have been encoded in theRSTEGY ENCODED
MATCHING UNIT (SEMU) logic on the FPGA. This method avoids
the latency of both on and off-chip memory access, but sicanifly
constraints the size of the strategy base that can be seppoft
diagram of this design is shown in Fig. 2. This setup is mabgiv
parallelized and offers strategy matching at extremelhh hites
(i.e. one clock cycle).

The stepwise operation of the hardware-only implementato
depicted in Fig. 2. In this design, the soft processor onlyese
to transfer (1) the received market event data packets fnemét-
work interface input buffer to the input queue of the our kaack-
only system. Custom hardware submodule, theHATCHERuNit,
parses (2) the incoming market events and feeds the curr@nt m
ket event data to all the matching units while generatingttel
necessary control signals to run these units synchronolsgh
unit is able to match all encoded strategies against thewumar-
ket (publication) event in one clock cycle. However, sulosed
clock cycles are spent in tallying the matches and prepatiag
final responses (e.g. forward address look-up or consoiglal/s-
tem wide match counts) that is eventually pushed (3) intootite
put queue. The soft processor then transfers (4) the finalt fesm
the output queue to the network interface to be sent to tead=sd
host(s).

Hybrid Implementation With our fpga-ToPSShybrid imple-
mentation, we employ a more generalized design that en#iges
matching units to support a dynamic and a larger strategg dat
set than can be supported in the hardware-only implementati
Unlike the SEMUSs (strategies encoded within hardware)BRAM-
based Matching Units (BMUs) allow static strategies to loeest
on the on-chip dedicated low latency Block Rams (BRAMs)sthu
making the design less hardware resource intensive coohpare
the hardware-only implementation. We adopt two approathes
reduce the impact of off-chip memory data access latencyhen t



overall system throughput. Firstly, we take advantage eftigh
degree of data locality inherent ropagation’s data structure
which helps to minimize random access latency. Second$, fa
(single cycle latency) but smaller capacity BRAMs are detdid
for each matching unit to store static strategies, which$ietask
the initial handshaking setup delay associated with oiff-chain
memory access, i.e., the market event matching can beginsaga
static strategies as soon as the event arrives; in the meaitiie
system prepares to setup data access from the off-chip DQR2 m
memory.

The stepwise operation of the hybrid system is depictedgn3:i
Upon arrival of a market event, the soft processor transfeys

the data packet to the input queue of the hybrid system. A cus-

tom hardware submodule, the $PATCHERUNIt, extracts strategy
predicates-value pairs, which are input to hash functiongen-
erate cluster addresses. Cluster addresses are used {apldbk&
memory locations (2) of the relevant strategy clustersiiegiboth

in BMU BRAMs and in off-chip main memory. The IBPATCHER
then feeds the market event (3) and previously computedeclus
addresses (4) on the MUADA Bus (common to all BMUS). Next,
the DISPATCHERuUNit activates all parallel BMUs to initiate match-
ing (5) using on-chip static strategies stored in each BMhllesi-
multaneously queuing up read requests for the off-chip nma&m-
ory. The transfer of dynamic strategy data between the BMUs i
pipelined to avoid stalling the matching units due to lacldafa.
Finally matched strategies are placed (7) into the outpatigu

6. DEMO METHODOLOGY

This section describes our demo setup including the haelwar
used to implement our FPGA-based algorithmic trading smiut
and the measurement infrastructure.

Demo Platform Our FPGA based solutions are instantiated on
the NetFPGA 2.1 [9] platform, operating at 125MHz and have ac
cess to four 1GigE Media Access Controllers (MACs) via high-
speed hardware FIFO queues (cf. Fig. 1) allowing a theaetic
8Gbps of concurrently incoming and outgoing traffic capacih
addition, a memory controller to access the 64 Mbytes of @ardh
off-chip DDR2 SDRAM is added. The system is synthesized to
meet timing constraints with the Xilinx ISE 10.1.03 tool dadyets
a Virtex Il Pro 50 (speed grade 7ns). Our soft processor ardma
ing units run at the frequency of the Ethernet MACs (125MHz),

Demo & Evaluation Setup For our experiments, we use HP
DL320 G5p servers (Quad Xeon 2.13GHz) equipped with an HP
NC326i PCle dual-port gigabit network card running Linug.26.

As shown in Figure 4, we exercise our algorithmic tradingisol
tions from the server executing a modifi€dpr epl ay 3.4.0

that sends market event packet traces at a programmablediteed
Packets are timestamped and routed to either the FPGA-kased
lutions (Setup 1) or PC-based (Setup 2) solution. Setup nis c
figured as one of the solutions described in Sec. 4 and Setsip 2 i
a baseline serving as comparison only. The network profmagat
delays are similar for either solution. Both FPGA-based Gr P
based solutions forward market events on the same wire aminc
ing packets which allows the Event Monitor (cf. Fig. 4) to zap
both incoming and outgoing packets from both setups. The EM
provides a 8ns resolution on timestamps and exclusivelyesdor

the measurements.

Demo Workload We generate a workload of tens of thousands
of subscriptions derived from investment strategies sichrhi-
trage and buy-and-hold. In addition, we generate markettswes-
ing the Financial Information eXchange (FIX) Protocol WRAST
encoding (cff i xpr ot ocol . or g).

Demo MeasurementsWe characterize the system throughput

FPGA - Based ‘

arket Event]
Packet Trace|

(Workload]

Measurement
& Visualization|

Setup 2
PC - Based
Solution
—

Figure 4: Demo Setup

[ [ PC [ Soft-Processorf Hybrid [ Hardware-only |
250 53.94 71.09 6.47 3.22
1K 60.77 199.43 7.56 N/A
10K 150.02 1,617.85 87.82 N/A
100K | 2,001.29 16,422.87 1,307.34 N/A

Table 1: End-to-end System Latency fs)

as the maximum sustainable input packet rate obtained ler-det
mining, through a bisection search, the smallest fixed pdnker-
arrival time where the system drops no packets. The latelhayro
solutions is the interval between the time a market evenketac
leaves the Event Monitor output queue to the time the first for
warded version of the market event is received and is add#teto
output queue of the Event Monitor.

7. CONCLUSIONS

Ourfpga-ToPS$ramework is built on NetThreads'’s soft proces-
sors, which is optimized for throughput and latency becaifiske
multiple threads executing in round-robin fashion that®esexe-
cution of two instructions in parallel per cycle [7]. Furthere, our
custom matching units provide the ability to match manytsgies
in parallel in addition to providing hardware acceleratidrastly,
by eliminating the operating system, the FPGA-based swiyiio-
vides a superior end-to-end system performance. In Tableel,
demonstrate the system latency as workload (investmextegtes)
size changes from 250 to 100K; a similar trend was also obgerv
for the system throughput which is omitted due to lack of spac
In summary, even though our FPGA chip (125MHz Virtex Il) is
much slower than the latest FPGA (800MHz Virtex 6) and signif
icantly slower than our CPU (Quad Xeon 2.13GHz), our hybrid
solution outperformed the PC-based solution by upto anrastie
magnitude, and our hardware-only, while currently feasiohly
for smaller workloads due to lack of resources on the FPGA, im
proved the latency by nearly two orders of magnitude.
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