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Abstract

This paper formalizes transactional properties for pub-

lish/subscribe client mobility and develops protocols to

realize them. Evaluations show that compared to traditional

protocols, those developed in this paper, in addition to

supporting transactional properties, are more stable with

respect to message and processing overheads. Changes in

factors such as the number of moving clients have little

impact, making the protocols more scalable and simpler to

administer due to predictable resource requirements.

1. Introduction

Many adaptive distributed applications require the stateful

reprovisioning of software components. For example, appli-

cations on virtual grid infrastructures are redeployed based

on application requirements and grid conditions [9], massive

multiplayer games migrate game state among servers in

response to changing workloads [2], distributed process

execution systems dynamically schedule agents at various

engines [18], adaptive stream processing engines reconfigure

dataflow operators to optimize query execution [13], [20],

load balancing algorithms move software modules between

nodes [5], mobile agent frameworks migrate program code

and state across nodes [16], [10], and in mobile applications

such as location-based services, the nodes themselves are

mobile and connect to nearby access points as they roam.

A distributed publish/subscribe system [4], [6], [14] pro-

vides a powerful communication infrastructure for com-

ponents of a distributed application. The pub/sub model

decouples application components (referred to as clients in

the pub/sub model) with a simple yet powerful interface

that supports complex interaction patterns. Enterprise ap-

plications may be spread across dozens of geographically

distributed sites with thousands or millions of users or

application components, a scale which distributed pub/sub

networks are designed to support. For example, online game

servers may be deployed at a handful of sites across the

world with high concentrations of players, or an enterprise
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executing large business processes may maintain a data

centre at each of its international branches.

Distributed reprovisioning of pub/sub applications re-

quires the ability to move pub/sub clients in a well-behaved

manner. For example, moving clients should neither miss

messages nor receive duplicates, and should be able to

send messages without interruption. To achieve this trans-

parency, a protocol must provide guarantees at the pub/sub

layer during routing table reconfiguration. However, there

is little literature that develops well-defined transactional

movement properties in a distributed content-based pub/sub

network. Though some work on pub/sub mobility has been

put forward [6], [17], they have used end-to-end protocols

that relied on optimizations, such as covering, to achieve

efficiency. We show in this paper that even with these

optimizations, such protocols can be too costly in an envi-

ronment characterized by frequent movement. We analyze

the problems and shortcomings of traditional movement

protocols, and propose an alternative protocol.

This paper makes three key contributions. (i) In Sec. 3

transaction properties are formalized for mobile clients in

a distributed content-based pub/sub system. The properties

are defined analogously to database ACID properties, and

are separated into layers. Modularization of the properties

allows protocols for the different layers to be developed

independently and utilized in various combinations. (ii) In

Sec. 4 efficient protocols to support the above transaction

properties are developed. As well, a failure model is outlined

and correctness proofs for the protocols are given under

the stated failure conditions. (iii) Finally, in Sec. 5 the

mobility protocols are implemented in a real system and

their performance analyzed in detail with evaluations on a

local testbed and a wide-area PlanetLab deployment.

2. Background and related work

Pub/Sub research has focused on developing efficient

routing protocols [1], [4], fast matching algorithms [7], and

features such as failure handling [12], load balancing [5], and

client mobility [6], [17]. However, none address the problem

of supporting transactional client movement guarantees in

the pub/sub system. The work presented in this paper is

therefore orthogonal to these approaches and presents an

important and fundamental addition to the body of pub/

sub knowledge. This paper also establishes the important



and surprising observation that the popular pub/sub covering

optimizations may actually negatively affect performance.

Transaction models for pub/sub that define a transactional

context for the processing of publications at subscribers

have been proposed to simplify the development of event-

based applications [15], [22]. The approaches are based on

a central transaction coordinator, much like traditional trans-

action processing systems, and little experimental evidence

to support the scalability of the approaches are presented.

Our work addresses transactions in the context of mobile

pub/sub clients aiming to preserve certain properties while

clients move, which none of the prior approaches address.

Protocols to repair failures in pub/sub networks do not

address routing table reconfigurations due to voluntary client

movement [12], [19]. In the latter case broker state changes

result from announced movement, not unexpected failures,

and more efficient algorithms can be developed.

Mobility in pub/sub has mostly dealt with subscriber

mobility, where the broker network stores and replays pub-

lications missed by a moving subscriber [6], [3], [17]. In

prior work we define and evaluate end-to-end subscriber

and publisher mobility protocols that rely on advertisement

covering for efficiency [17]. A moving publisher issues an

advertisement (unadvertisement) at the new (old) access

point. By contrast, as evaluated in Sec. 5, the work presented

in this paper performs reconfigurations in a more efficient

hop-by-hop manner that is also less susceptible to interac-

tions among clients than an end-to-end approach.

The work in this paper is implemented in the PADRES1

distributed content-based pub/sub system which uses a

language model where subscriptions are a conjunction of

(attribute, operator, value) predicates, and publications

are a set of (attribute, value) pairs [8], [14].

Each PADRES broker manages a Publication Routing

Table and Subscription Routing Table. An advertisement

from a publisher is inserted as an {adv, lasthop} pair in

the SRT and then forwarded to all neighbours. A subscrip-

tion that intersects an advertisement is forwarded to the

advertisement’s last hop and inserted into the PRT as a

{sub, lasthop} pair. A publication matching a subscription

in the PRT is forwarded to the last hop of the subscription

hop-by-hop until it reaches the subscriber.

The covering optimization can reduce message propa-

gation. If subscription s1 covers subscription s2 then the

publications that match s1 are a superset of those that match

s2, and so s2 need not be forwarded. A similar optimization

can be applied to covering advertisements.

3. Transaction properties

It is desirable for the movement of clients in a pub/sub

system to be transparent to both the moving client and

those it interacts with, such that an application consisting

1Available for download at http://padres.msrg.utoronto.ca.

of stationary clients behaves the same as one where the

clients move. Among other things, this means that clients

should not miss any notifications while moving, and their

movement should not be visible to others.

This section defines strong properties for client mobil-

ity in a pub/sub system similar to the relational database

ACID [11] properties of Atomicity, Consistency, Isolation,

and Durability. We assume in-memory routing algorithms

and hence will disregard the durability property. (Durability

can be achieved by persisting state to stable storage.)

3.1. Movement operation

Consider Fig. 1 where Client A moves from broker B1 to

broker B7 by issuing a MOVE command. The knowledge of

where to move is application specific. For example, a virtual

machine instance may wish to move to a less congested part

of the network, or a stream processing operator may relocate

to a machine with more memory.

B1

B2

...

B7

B8

Client A

Broker Network

Movement operation:

MOVE(to Broker B7)

Client A

Client B

Fig. 1. Client movement

The end result of

a successful move-

ment operation is

that the client must

sever its connection

to broker B1 and

establish one with

broker B7 without

losing any messages in the process. The movement may

fail for any number of reasons including the target broker

rejecting the moving client (perhaps because the broker

is overloaded, or the client is not authorized to make

the connection), in which case the client should remain

connected to broker B1, again with no loss of messages. The

guaranteed transactional properties required of the operation

are presented in the remainder of this section.

While movement can be achieved purely by managing a

client’s connections, this paper considers the more general

case where a client’s execution location also moves. For

example, a component managing a portion of a multiplayer

game world may decide to migrate to a more optimal

location in the network. While transferring the client com-

putation and state, before the movement transaction has

completed, there may be a copy of the client at both the

source and target brokers (B1 and B7, respectively, in

Fig. 1). This does not mean, however, that there are multiple

functional instances of the client; the properties defined

below ensure that only one copy of the client is “active”

or visible to other clients in the system.

3.2. Pub/Sub system layers

A pub/sub system can be segmented into layers of well-

defined functionality as depicted in Fig. 2. At a coarse

grain, a client and broker interact with messages, including

advertisements, subscriptions and publications from client to

broker, and notifications from broker to client.

http://padres.msrg.utoronto.ca
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A client consists of application

and pub/sub stub layers. The ap-

plication layer encapsulates the

application logic, be it an online

game or a workflow management

system. At this layer, transaction

properties are domain specific

but may rely on the properties

of the lower layers. The pub/sub

stub layer interfaces with a pub/

sub broker. To support mobility, this layer must manage the

phases of a moving client including queuing commands from

the application, and retrieving notifications missed while

moving. Since this paper does not consider the application

layer, the pub/sub stub layer in the client is referred to

interchangeably with the client itself.

A pub/sub broker is divided into routing and mes-

saging layers. The routing layer is concerned with how

(un)advertisements, (un)subscriptions, and client movements

influence the pub/sub routing tables, especially with routing

state distributed across brokers. The messaging layer pro-

vides point-to-point communication between brokers. Mes-

saging transactions, addressing concerns such as message

ordering and synchronous versus asynchronous communi-

cation, are readily found in messaging products, such as

MQSeries and JMS; they are not considered in this paper.

In Fig. 2 messages from the client affect the broker routing

tables, but notifications from the broker are passed to the

application layer without modifying the pub/sub stub state.

However, since notifications are exposed to the application,

it is necessary to define guaranteed properties for the notifi-

cations delivered to a client. The remainder of this section

defines properties on the mobile client state (Sec. 3.3), the

notifications delivered by the routing layer (Sec. 3.4), and

the distributed routing table state (Sec. 3.5). Algorithms that

satisfy the properties in each layer are presented, along with

proofs, in Sec. 4.2, 4.3, and 4.4, respectively.

3.3. Client layer

We first focus on the correctness of a client movement

protocol by way of properties on the state of clients. Each

client must be in a unique state at all times. In standard pub/

sub systems, a client may be in a connected or disconnected

state. As we shall see in Sec. 4.2, in a system that supports

mobility, more states are required.

Atomicity: We define two atomicity properties:

(a) After the transaction completes, a moving client must

be either at its source or target broker, but not both.

(b) For a transaction consisting of a sequence of oper-

ations {o1, ..., on} that transition a client from state s0 to

{s1, ..., sn}, the final state of the client must be s0 or sn.

That is, either all operations are completed, or none are.

Consistency: There must be at most one running instance

of each client. This states that a movement should not result

in two instances of a client, with one instance at the source

broker and another at the target.

Isolation: Suppose it is possible for an operation by a client

to observe the state of another client. Given a transaction

Tx = {o1, ..., on} that causes a client to change its state

from s0 to {s1, ..., sn}, an operation in another transaction

Ty should only observe s0 or sn.

The properties above make a movement operation trans-

parent in terms of the client’s state. For example, if isolation

is violated, then one of the intermediate states of a moving

client may be observable, and the movement is no longer

transparent. This point will become clearer in Sec. 4.2 where

the state transitions of a moving client are described.

3.4. Notifications

We now define the properties required of the notifications

delivered by the routing layer to the pub/sub clients. Let

Pi(ta → tb) denote publications issued by client i in the time

interval bounded by ta and tb, and Ni(·) refer to notifications

received by client i. If necessary, notifications received by

the copy of the client at the source or target broker are

distinguished as NS
i (·) or NT

i (·), respectively.

Atomicity: Notifications—the delivery of publications to

interested subscribers—are atomic. In the case of interested

stationary clients, they are delivered exactly once; or in the

case of interested moving clients, delivered exactly once to

either the source or target client copy, but not both.

Consistency: Consider a client that initiates a movement op-

eration at time t0 in Fig. 3. The notifications NT (t0 → t∞)
received by the client if the movement succeeds should be

the same as those NS(t0 → t∞) it receives if the operation

fails and it remains at the source. (Time t∞ refers to the

time when the client permanently disconnects from the pub/

sub network, and hence NS(t0 → t∞) contains the set of

notifications the client will ever receive starting from time

t0.) Notice that the location of a client may affect the order

of notifications, which is why this property only requires

that notifications are eventually delivered to the client.

Isolation: Consider a client Ci that initiates a movement

operation at time t0, and assume that the publications

Pi(t0 → t∞) issued by Ci if the movement is successful,

are the same as the publications P ′

i (t0 → t∞) it issues if

the movement fails. The notification received by every other

client Cj 6= Ci must be the same whether the movement

completed or not: Nj(t0 → t∞) = N ′

j(t0 → t∞).
The notification properties above are designed to make a

client’s movement transparent, in terms of the notifications

delivered both to itself and other clients in the network.

For example, if atomicity is violated, a message may be

processed twice by a client (once each by the copies of the

client at the source and target brokers). The effects of this

double processing of a message can be observed, making

the movement visible, and thus may violate isolation.



3.5. Routing layer

Finally, we define the properties of the routing table state

in a distributed content-based routing protocol.

Atomicity: For an operation o (such as advertise, subscribe,

publish, or move) by a client, a pub/sub protocol defines

routing table updates U(o) that should occur. To be atomic,

either all updates in U(o) occur, or none.

Consistency: For every advertisement A that matches a

subscription S issued by a client C, it must be that:

(i) At every broker Bi in the path from publisher(A) to

C : S.lasthop 6= A.lasthop ∧ S.nexthop = A.lasthop.

(ii) At every broker Bi : Bi and A.lasthop are neighbours

in the path from Bi to publisher(A).
These properties define the minimal set of routing table

entries required to deliver notifications to all interested

subscribers. Note that a routing table may have additional

(perhaps stale) entries and still be considered consistent.

Isolation: Consider the advertisements Ai and subscriptions

Si issued by a moving client. Let RTB be the routing

table entries at broker B, and RTB(Ai) and RTB(Si) be

the subset of RTB corresponding to Ai and Si, respec-

tively. To satisfy isolation, for every broker B : [RTB −
RTB(Ai, Si)]beforemove = [RTB −RTB(Ai, Si)]aftermove.

Informally, a movement should only update routing entries

of the advertisements and subscriptions issued by the moving

client; other clients’ routing state should be unaffected.

The above properties are satisfied by well-known pub/sub

routing protocols under non-failure conditions, and it is not

difficult to adapt these protocols to tolerate failures in the

case where faults are not permanent: brokers that crash are

eventually restarted or replaced with a working broker, and

link failures never permanently partition any set of brokers.

Under such failures, a pub/sub protocol can be made fault-

tolerant by persisting the algorithmic and queue state of each

broker, to recover from node and link failures, respectively.

The algorithmic state—data managed by pub/sub protocols

such as advertisements and subscriptions—is typically kept

in memory, but can be persisted. The queue state includes

unprocessed incoming messages at a broker and undelivered

outgoing messages. The reliable delivery of these messages

between brokers can be achieved using persistent queues.

One implication of recovering broker failures locally without

coordination among brokers, is that the recovery of a crashed

broker may take arbitrarily long (perhaps requiring a manual

restart), and so message delays may be unbounded, although

eventual delivery is guaranteed.

The fault tolerance scheme above is straightforward and

uses well-known technologies, and serves to demonstrate it

is possible to implement a distributed pub/sub routing pro-

tocol that satisfies the atomicity, consistency, and isolation

properties described above. Research on more sophisticated

fault-tolerant algorithms is ongoing [12], [19] and the above

properties can serve as a guide for such research. They are

also used in this paper as a basis for the proofs of subsequent

properties. In this way it is clear what properties are required

of a robust pub/sub routing protocol in order to support the

higher-level properties we address more fully below.

4. Client Movement Protocol

This section presents client movement protocols and

proves they satisfy the transactional properties in Sec. 3.

Unlike typical pub/sub mobility [6], where the client dis-

connects from one broker and reconnects to another, these

protocols provide strong transactional movement guarantees

and are more efficient, as we show in Sec. 5.

4.1. System model

We assume an acyclic overlay of pub/sub brokers that

satisfy the properties in Sec. 3.5. Notably, node crashes or

network faults in the pub/sub layer are masked by the rout-

ing protocols. A method to adapt existing pub/sub routing

algorithms to be fault-tolerant was sketched in Sec. 3.5.

A mobile container associated with each broker encapsu-

lates a coordinator (to execute the movement protocol) and

the clients themselves. In this way, the middleware has full

control over the deployment of clients. Also, we assume that

the components within a container do no individually fail,

so a crash failure of a coordinator implies a failure of the

associated clients and vice versa.

Our movement algorithms are based on the three-phase

commit (3PC) distributed transaction protocol [21]2. As

such, we can inherit the same failure model that this protocol

assumes. In particular, crash failures of mobile clients and

coordinators are allowed, and two network failure models

are supported: (i) the network delivers messages within

a bounded delay, in which case the non-blocking 3PC is

used and movement transactions are guaranteed to complete

within a bounded time; or (ii) message delays are unbounded

in which case we use a blocking variant of the protocol and

the movement algorithm may block.

4.2. Client layer

We present a movement protocol that satisfies the prop-

erties in Sec. 3.3. It consists of a conversation between

the source broker a client is moving from and the target

broker it is moving to as outlined in Fig. 3. While the

protocol is handled by the source and target brokers, the

brokers make use of a reconfiguration message (message

(2) in Fig. 3) that is processed by all brokers along the path.

The handling of this message is detailed in Sec. 4.4. The

movement protocol modifies the state of the client and that

of the source and target brokers as summarized in Fig. 4.

The protocol proceeds as follows when a client moves from

source broker Bi to target broker Bj :

2Unlike 2PC, 3PC supports non-blocking transactions, and nicely con-
forms to the message exchanges in our movement protocol in Sec. 4.2.
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Fig. 3. Protocol overview

First, Bi sends message

(1) to Bj with data about

the moving client such as

its ID, and its subscriptions

and advertisements.

If Bj decides to accept

the client, Bj initializes

a transaction state for the

new client, and then issues

message (2) containing the client id and its subscriptions

and advertisements. Message (2) executes routing table

reconfiguration as described in Sec. 4.4. If Bj does not

accept the client it sends a reject message (3) to Bi.

If Bi gets message (2), it stops the client, and sends

message (4) to Bj , along with any queued publications for

the client. Otherwise Bi receives message (3) and resumes

the client.

Bj receives message (4), and dispatches it to the new

client, which merges the notifications in the payload of this

message with those in the queue at the target node. Bj also

sends message (5) to Bi, upon receipt of which Bi finally

cleans up any state associated with the client.

The client and coordinator at the source and target sites,

all of which participate in the protocol, are modelled in

Fig. 4. State transitions are labelled by the input transition

trigger message and the generated output message. Messages

between the application, mobile client, and coordinator are

marked as indicated in the legend in Fig. 4.

The global state of a distributed protocol is defined by

a vector of local states and outstanding messages in the

network, and the global state transitions when a local state

transition occurs. Transitions between global states create a

reachable global state graph. For example, a possible global

state is one where the source and target coordinators are in

the init state with the move message (sent by the client

to the coordinator) outstanding in the network. When this

message is received, the global state transitions to one where

the source coordinator moves to the wait state, the target

coordinator remains in the init state, and the negotiate

message (sent from the source to target coordinator) is in the

network. Fig. 5 is the global reachable state graph for the

local coordinator state graphs in Fig. 4. Note that the initials

of the local coordinator state names are used to label the

global states in Fig. 5.

The table embedded in Fig. 4 lists the possible concurrent

client states for each coordinator state. For example, when

both coordinators commit the transaction, the source client

must be in the clean state, and the target client in the

started state. From the table in Fig. 4, we see that for

any global state in Fig. 5, two properties hold: (1) in a final

global state, exactly one client is started and the other

is clean; and (2) in any intermediate global state, at most

one client is started.

Using these properties, we can prove the client state

properties in Sec. 3.3.

Atomicity Proof: (a) It follows from property (1) that

a client only exists in the source or target broker after a

movement. (b) Since we assume the client and coordinator

experience the same faults (because they run on the same

node), and the coordinator is guaranteed to abort or commit

(barring an unrecoverable crash failure), the client will,

according to Fig. 5, end up in its initial state (if the

coordinator aborts), or the final state (if it commits). �

Consistency Proof: It follows from property (2) that there

is at most one running instance of a client. �

Isolation Proof: A client’s state can only be inferred by

notifications received from it, in which case the client is in

the running state. Since a client is never running until the

movement has committed or aborted, it is not possible to

observe an intermediate state of a moving client. �

4.3. Notifications

We now prove the notification properties from Sec. 3.4,

assuming the use of a pub/sub layer that satisfies the routing

state properties in Sec. 3.5.

Atomicity Proof: Correct routing state properties (namely

consistency and atomicity) will ensure that the routing tables

are configured so as to deliver notifications to stationary

clients. For mobile clients, in any committed global final

state in Fig. 5, the reconfiguration message would have

been sent resulting in the appropriate updates to the routing

state. Hence, a correct routing layer will deliver all messages

to either the source or target client. �

Consistency Proof: Based on the protocol in Fig. 3, we

wish to show that the set of notifications NS(t0 → t∞)
received had the client not moved is equivalent to the

notifications NT (t0 → t∞) if it does move. We first note

that NT (t0 → t∞) = NT (t2 → t∞) ∪ NS(t0 → t3) since

the target receives the latter messages from the source as

part of the protocol. And, by definition, NS(t0 → t∞) =
NS(t0 → t3) ∪ NS(t3 → t∞).

It suffices to show that NT (t2 → t∞) and NS(t3 → t∞)
are equivalent. Note that only at t3 have routing table

entries for the target client been properly updated. Assuming

routing states are setup correctly by the routing table layer,

every publication m ∈ NT (t2 → t∞) also belongs to

NS(t3 → t∞). Similarly, by virtue of an acyclic topology

in which messages are processed in order, every publication

m ∈ NS(t3 → t∞) also belongs to NT (t2 → t∞). Hence,

NT (t2 → t∞) and NS(t3 → t∞) are equivalent. �

Isolation Proof: We assume a client Ci issues the same

publications regardless of its location: Pi(t0 → t∞) =
P ′

i (t0 → t∞). It remains to show each publication is

issued exactly once. A client may only publish while in

a running state. We have seen that a client is never in a

running state at both the source and target, and that after

the transaction completes, it will be in the started state at
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the source or target, but not both. Therefore, a client cannot

issue a publication from both the source and target, and

since publications are buffered while in a non-started state,

publications are not dropped, and hence each publication is

issued exactly once. �

4.4. Routing layer

We now outline the routing layer protocol to achieve client

movement according to the transactional properties defined

in Sec. 3.5. The objective of the routing reconfiguration al-

gorithm is to efficiently maintain valid routing configuration

states during client movement.

In traditional client movement [6], [17], a client dis-

connects from its source broker after unadvertising and

unsubscribing its history, and these messages propagate

through the network. Then, the client connects to the target

broker and reissues its advertisements and subscriptions,

which again propagate. This is expensive, especially since

(un)advertisements are flooded. The protocol can be im-

proved by enabling advertisement and subscription cov-

ering, where (un)advertisements and (un)subscriptions are

quenched by covering advertisements and subscriptions.

Contrary to traditional assumptions, with frequent mobil-

ity, enabling covering may actually degrade performance.

Consider publisher pub1 (pub2) issuing advertisement adv1

(adv2) and let adv2 cover adv1. Suppose adv1 is sent

first, and flooded. Then, adv2 is issued and also flooded.

With advertisement covering, there are links where it is

redundant to send both adv1 and adv2. For example, when

a broker B′ forwards adv2 to broker B′′, it will also

issue an unadvertisement for the previously sent adv1 since

adv2 covers adv1. It turns out that adv1 will have to be

unadvertised over all links not on the path between pub1

and pub2. So, we have a situation where both adv1 and adv2

were flooded, and adv1 was unadvertised throughout most of

the network, which is more expensive than if covering is not

enabled. Such situations are more likely when clients move

frequently, and issue many advertisements and subscriptions.

We develop a routing reconfiguration protocol to achieve

the best-case efficiencies of the traditional covering-based

mobility algorithm, and not suffer from its pathological de-

ficiencies. The algorithm reconfigures the routing table hop-

by-hop along the path between source and target brokers.

Since the overlay is acyclic, there is only one route

from a source broker Bi to a target broker Bj (assume

i < j). This route, RouteS2T , is a sequence of brokers,

< Bi, Bi+1, . . . , Bj >, such that (Bm, Bm+1) is an edge in

the network, where i ≤ m < j. The predecessor and succes-

sor of B in RouteS2T are denoted as RouteS2T.pre(B)
and RouteS2T.suc(B), respectively.

Suppose a publisher at broker Bi moves to broker Bj (i <
j). After movement, advertisement adv at the old publisher

becomes adv′ at the new publisher.

Claim 1: The routing configurations of adv and adv′ are

identical at all brokers except for brokers B ∈ RouteS2T .

Proof: Consider a broker B /∈ RouteS2T . B must have

zero or one neighbours Bn ∈ RouteS2T (since the network

is acyclic). In the former case, B must have a neighbour B′

n

that is on the path to both Bi and Bj (since the topology is

acyclic). In the latter case, the only path to B from either

Bi or Bj is through Bn. Hence, in either case the routing

configuration at B consists of an entry for adv or adv′ from

either Bn or B′

n. �

Claim 2: The routing configurations of adv and adv′ at

all brokers Bl ∈ RouteS2T are different.

Proof: Consider a broker B ∈ RouteS2T and B is



neither Bi nor Bj . Since Bi and Bj are at opposite ends of

RouteS2T , the neighbour from which B receives adv (sent

by Bi) must be different from which it receives adv′ (sent

by Bj), and hence the routing configuration of B is different

in the two cases. Likewise, the routing configuration at Bi

and Bj will be different. �

This means that only the routing state at brokers along the

route from target to source broker need to be modified. It is

possible to simulate un-advertisement and re-advertisement

by modifying the routing configuration rc(adv) to be

rc(adv′) hop-by-hop from Bi to Bj (source to target) or

from Bj to Bi (target to source). Since the information

about an advertisement at a broker influences the routing

of matched subscriptions, both the records in the SRT and

the records in the PRT must be modified.

To move a publisher that has issued an advertisement adv,

the routing configuration at every broker Bl ∈ RouteS2T is

modified as follows. The records (adv, RouteS2T.pre(Bl))
in the SRT are modified to (adv′, RouteS2T.suc(Bl)). For

the records (sub, lasthop) in the PRT where sub intersects

adv, there are three cases to consider: (1) sub.lasthop =
Bx /∈ RouteS2T ; (2) sub.lasthop = RouteS2T.suc(Bl);
and (3) sub.lasthop = RouteS2T.pre(Bl)

For the first case, since adv.lasthop = adv′.lasthop
in broker Bx, any subscription sub intersecting adv also

intersects adv′, and will be forwarded to Bl. If sub has

not already been forwarded to RouteS2T.suc(Bl), it also

needs to be forwarded to adv′.lasthop. Note that at Bl,

adv′.lasthop = RouteS2T .suc(Bl).
For the second case, sub.lasthop = adv′.lasthop, which

means that sub /∈ rc(adv′). Unless sub intersects an adver-

tisement besides adv, it is removed from the PRT .

For the third case, sub.lasthop = adv.lasthop, which

means that sub /∈ rc(adv), so it must also match

some other advertisement adv1 where adv1.lasthop =
RouteS2T.suc(Bl) or adv1.lasthop /∈ RouteS2T . If sub
has not already been forwarded to RouteS2T.suc(Bl), it

needs to be forwarded there.

To guarantee atomicity of the movement transaction, it

is necessary to construct a copy of rc(adv′), which is the

revised version of rc(adv), at each broker along RouteS2T .

Because of Claim 1, the algorithm only needs to revise the

routing configurations along RouteS2T . If the transaction

commits, the old routing configuration rc(adv) is deleted

hop-by-hop, otherwise, rc(adv′) is deleted hop-by-hop.

5. Evaluation

The main conclusion of the evaluations is that the re-

configuration protocols exhibit more stable performance

than the traditional covering-based movement protocol. The

covering protocol’s performance varies greatly and is more

susceptible to pathological scenarios.

The protocols in this paper are implemented in the Java-

based PADRES content-based pub/sub prototype. Experi-

ments performed on a cluster of 1.86 GHz machines with

4 GB of RAM that mimics an enterprise data centre en-

vironment and offers a controlled system for meaningful

analysis. Evaluations are also conducted on heterogeneous

nodes in the wide-area PlanetLab testbed, representing a

geographically distributed system administered by one or

more enterprises, and also serves to stress the protocols

under the unpredictable and shared PlanetLab network.
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Fig. 6. Default topology

By default the 14 broker

overlay in Fig. 6 is used

with each broker running

on a separate machine. The

network scale is appropri-

ate for the motivating ap-

plications from Sec. 1; we

are not considering P2P applications with millions of nodes.

A mobile coordinator is co-located with each broker al-

lowing any broker to host mobile clients, and so we will

not distinguish between brokers and mobile coordinators.

Unless otherwise stated, clients connect to a random broker

at startup, and then initiate their movement pattern, pausing

for ten seconds at each broker between movements. Each

subscriber is assigned a subscription randomly from the

subscription workload.

Metrics include network traffic, movement duration and

movement throughput. Network traffic, measured as the sum

of messages transmitted over each overlay link, includes

publications, (un)subscriptions, and (un)advertisements. As-

suming roughly equal message sizes we approximate net-

work traffic with message counts. Movement duration is

the time to complete a client movement transaction, and

movement throughput measures the number of movement

transactions the system can process in a given time.

Each client issues a subscription chosen from the four sub-

scription workloads in Fig. 7, where covering relationships

are shown. For example, in Fig. 7(a), the root subscription

covers all the others. Not shown is a Random workload in

which subscriptions from all four workloads in Fig. 7 are

selected uniformly. The details of individual subscriptions

are omitted since it is primarily the covering relationships

among them that affect the results.

Subscription Workload: We evaluate the sensitivity of

the protocols to different subscription workloads. We first

consider an experiment in which 400 clients, initially con-

nected to Brokers 1 and 2, each repeatedly performs a

movement between Brokers 1 and 13, and 2 and 14, waiting
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Fig. 7. Subscription covering relationships
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Fig. 8. Movement latency over time
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Fig. 9. Subscription workload

for ten seconds at each broker before moving again.

The movement latency is shown in Fig. 8 for the reconfig-

uration and covering movement protocols. Each point in the

plot represents the time to complete the protocol (vertical

axis) for a movement that starts at a given time (horizontal

axis). Notice that the reconfiguration protocol is more than

an order of magnitude faster than the covering one. Also

observe that movements at the beginning of the experiment

take longer than those at the end due to the load imposed by

joining clients. To avoid skewing steady state performance,

we ignore this setup phase in subsequent results.

In Fig. 8(b), we see that clients moving between Brokers 1

and 13 are slower than those between Brokers 2 and 14.

This is because odd valued subscriptions as numbered in

Fig. 7 are initially assigned to Broker 1, and even ones

to Broker 2. Since subscription 1 in the covered and tree

workloads (Figs. 7(a) and 7(c)) cover more subscriptions

than others, it is more likely to cause a pathological subscrip-

tion propagation during movement as explained in Sec. 4.4.

We confirm this with results that show there is almost no

variance in movement latencies with the chained workload

(where each subscription covers at most one other), and that

the variance increases with the covered workload (where the

root subscription covers the remaining nine).

Fig. 9(a) summarizes the latencies for different workloads,

with the x-axis values corresponding to the number of

covered subscriptions in the workload. The reconfigura-

tion protocol exhibits little variation in latency, while the

covering protocol performs worse—almost two orders of

magnitude in the worst case—when more covering is present

in the subscription workload.

Fig. 9(b) shows the number of messages normalized to

the number of movements that occur during the experiment.

Since clients keep moving during the experiment, a slow

protocol will result in fewer movements, and so the per-
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Fig. 10. Number of clients
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Fig. 11. Single client

movement message counts are a more fair representation

of a protocol’s message overhead. The normalized message

values are plotted as lines with values on the left vertical

axis, and for completeness, the number of movements are

plotted as impulses with values on the right vertical axis.

First observe in Fig. 9(b) that the reconfiguration protocol

maintains a stable message overhead regardless of workload,

and is able to complete roughly the same number of client

movements during the experimental duration. On the other

hand, the covering protocol performs fewer movements with

the tree and covered workloads, a direct consequence of each

movement taking longer to complete as we saw in Fig. 9(a).

It seems odd that, compared to the tree workload, the

covered workload imposes less per-movement message over-

head as seen in Fig. 9(b) but results in a longer movement

latency. This apparent discrepancy is due to an underlying

bimodal behaviour of the covering algorithm with the cov-

ered workload. It is cheap for the covering protocol to move

one of the non-root subscriptions in the covered workload

(subscriptions 2 to 10 in Fig. 7(a)) because their propagation

is quenched by the presence of the covering root subscription

(subscription 1 in Fig. 7(a)). Moving the root subscription,

however, is expensive, since it triggers the propagation of

all the non-root subscriptions. The movement of the root

subscriptions occurs seldom relative to the non-root ones

which is why the message overhead of the covered workload

is less than that of the tree one which contains fewer non-

leaf subscriptions. However, when the root subscription does

move, it causes a burst of messages that causes significant

congestion and has a large impact on movement latencies.

We emphasize that unlike the covering protocol, the

reconfiguration protocol’s message load and latency results

are stable with respect to subscription workloads.

Number of Clients: We evaluate scalability by varying

the number of moving clients from 400 to 1000. Fig. 10(a)
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Fig. 12. Incremental movement
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Fig. 13. Topology size

illustrates two important points: the reconfiguration algo-

rithm performs much better than the covering algorithm,

and the latter’s performance degrades with more clients,

while the former maintains stable performance. We see

the same stable message overhead for the reconfiguration

protocol in Fig. 10(b). There is an apparent paradox with the

reconfiguration protocol achieving faster movement despite

more total messages (which is the product of the normal-

ized overhead and the number of movements). This occurs

because it is able to isolate these messages within the path

between source and target brokers, and because it does not

suffer from bursty propagation of messages that congest the

network. This also explains why a slight increase in the

covering protocol’s message overhead dramatically impacts

the latency results in Fig. 10(a).

Single Client: This experiment isolates the effects of

moving a single subscription in the covered workload with

400 clients. Only the root subscription (subscription 1 in

Fig. 7(a)) is moved. Fig. 11 shows that the covering protocol

has much worse movement latency and message load. Since

only the root subscription moves here, we confirm the reason

for this is precisely due to the pathological case for the

covering protocol, where subscriptions (unsubscriptions) of

the root subscription induce unsubscriptions (subscriptions)

of the non-root subscriptions.

Incremental Movement: We evaluate the incremental

effect of movement by keeping the number of clients con-

stant at 400, and increasing the number of these that move.

Fig. 12(a) again shows the superior and stable latencies of

the reconfiguration protocol. The covering protocol exhibits

an interesting behaviour. In the experiment each increment of

ten moving subscriptions are successively chosen as follows:

ten covering (i.e., root) subscriptions from the covered

workload, ten covering from the tree workload, ten covering

from the chained workload, ten covered (i.e., leaf) chosen

randomly from the previous three workloads, and finally ten

from the distinct workload. Notice that the first four sets

of subscriptions have less and less covering, with the last

two sets not covering any. For example, the first ten are

chosen only from the covering workload (which has the

most covering). And so, we expect the incremental effect

of moving ten tree workload subscriptions to be greater

than that of ten chained subscriptions. Indeed, we observe in

Fig. 12(a) that the slope of the covering protocol’s latency

between the first ten and twenty (tree workload) moving

clients is slightly steeper than for the next ten (chained

workload). The movement of subscriptions that do not cover

any others, introduced when forty clients move, can be

performed very quickly and contributes to a reduction in the

average latency of the covering protocol. Likewise, the last

ten subscriptions do not cover any, and they further reduce

the average latency of the covering protocol. Fig. 12(b)

also shows how the message overhead for the covering

protocol decreases when moving subscriptions with less

covering. The results in Fig. 12 nicely illustrate how the

covering relationships of the subscription workload affect

the performance of the covering protocol.

Topology Size: In this experiment we increase the number

of brokers in the topology but keep the path length between

source and target brokers constant by only moving clients

between Brokers 1 and 12, and Brokers 2 and 14. The

covered workload is used here to try to induce an exag-

gerated effect. Fig. 13 shows that increasing the topology

size affects neither the latency nor message load drastically.

This is expected since the reconfiguration protocol sends

messages between the source and target brokers, and the

covering protocol is primarily affected by congestion in

the path between these two brokers. However, we wish to

note that if there were clients moving in other parts of the

network, they would be affected by the covering protocol

but not the reconfiguration protocol.

Wide-area PlanetLab deployment: Evaluations on Plan-

etLab confirm the trends observed in the local testbed, but

show longer movement latencies due to the more limited

network and compute resources on PlanetLab. For example,

similar to the experiment in Fig. 8, Figs. 14(a) and 14(b) now

show the results of a 14 broker topology with 100 moving

clients in the wide-area testbed. The reconfiguration protocol

performs movements faster than the covering algorithm,

but both take longer than in the local environment. Also

the latencies vary more due to the unpredictable resource

availability in the shared PlanetLab environment. As well,

the trends in the local testbed in Fig. 9 occur in the wide-area

deployment: Fig. 14(c) shows the covering protocol suffers

with workloads with more covering, and Fig. 14(d) confirms

the reconfiguration protocol imposes a smaller message over-
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Fig. 14. Wide-area PlanetLab deployment

head than the covering protocol, and completes movement

transactions at a faster rate. Other experiments on PlanetLab

reinforce earlier conclusions such as the insensitivity of

either protocol to the size of the network topology.

6. Conclusions

Distributed applications deployed on virtual grid infras-

tructures, stream processing engines, or distributed workflow

execution systems require the dynamic reprovisioning of

software components across nodes in the network. While

the pub/sub model is well suited as a messaging layer for

distributed applications, the movement of pub/sub clients

between brokers is not guaranteed to be well-behaved.

This paper seeks to support the guaranteed movement of

pub/sub clients according to well-defined properties. The

transactional concerns of various layers are outlined, and

atomicity, consistency, and isolation properties for three

layers—client, notification, and routing—are specified. Fur-

thermore, protocols to achieve these properties are described

and correctness proofs are given. Unlike protocols where

client mobility is handled by the end point brokers, a more

efficient reconfiguration algorithm is developed in which

brokers on the path from the source to target brokers

participate in the client mobility protocol.

Evaluations in both a local data centre environment and

a wide-area PlanetLab testbed indicate that the proposed

reconfiguration mobility protocol outperforms the traditional

protocol in terms of both the movement transaction time and

network overhead, and confirm that the covering optimiza-

tion is costly in a scenario with mobile clients. Moreover,

the reconfiguration protocol exhibits much more stable be-

haviour: changes in the nature of the subscriptions, number

of moving clients, and background pub/sub activity, such

as unsubscriptions by non-mobile clients, hardly affect the

performance of the reconfiguration protocol, whereas the

traditional mobility protocol’s performance varies greatly.

This stability property not only illustrates the scalability of

the protocol, but is also vital for administrators to plan the

provisioning of a network’s resources without having to be

concerned with changing application workloads.
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