
Routing of XML and XPath Queries in Data Dissemination Networks

Guoli Li Shuang Hou Hans-Arno Jacobsen
Middleware Systems Research Group, University of Toronto

{gli,shou}@cs.toronto.edu jacobsen@eecg.toronto.edu

Abstract

XML-based data dissemination networks are rapidly
gaining momentum. In these networks XML content is
routed from data producers to data consumers throughout
an overlay network of content-based routers. Routing deci-
sions are based on XPath expressions (XPEs) stored at each
router. To enable efficient routing, while keeping the routing
state small, we introduce an advertisement-based routing
algorithm for XML content, present a novel data structure
for managing XPEs, especially apt for the hierarchical na-
ture of XPEs and XML, and develop several optimizations
for reducing the number of XPEs required to manage the
routing state. The experimental evaluation shows that our
algorithms and optimizations reduce the routing table size
by up to 90%, improve the routing time by roughly 85%, and
reduce overall network traffic by about 35%. Experiments
running on PlanetLab show the scalability of our approach.

1. Introduction

Over the past decade, XML has rapidly evolved as
the standard for data representation and exchange. XML
marked-up message traffic in intranets and on the Internet
range from insurance claims, health-care requests, corpo-
rate memos, online ads to news items and entertainment in-
formation. The standardization of the mark-up language,
the wide range of related standards, and the wide-spread
adoption of this technology are further amplifying the net-
work externalities created by this technology.

XML-based data dissemination networks are starting to
become a reality. In a dissemination network, data, marked-
up in XML, is routed based on filter expressions stored
at intermediate nodes that indicate where the XML docu-
ment is to be routed to. Filter expressions, often expressed
as XPath expressions (XPEs), are submitted by data con-
sumers who express interest in receiving certain kinds of
documents. For instance, a globally operating insurance
company with many branch offices distributed world-wide
is linked by an overlay network of content-based routers

that comprise the XML dissemination network. An insur-
ance claim, an insurance bid, or a request for proposal can
be submitted anywhere into the overlay network (e.g., by
a third party insurance broker or an online client) and be
routed toward a currently online, specific expert employee,
speaking the same language as the requester. Note, the latter
constraints are expressed as XPE filter expressions against
which the XML document is evaluated in transit. This de-
sign fully decouples information requesters and information
providers, avoids a single point of control and a single point
of failure, and increases scalability due to decentralization
and distribution.

This paper addresses the XML/XPath routing problem.
More specifically, this paper focuses on the problem of ef-
ficiently routing an XML document emitted from a data
producer at one point in the network to a set of data con-
sumers located anywhere throughout the network. Prior
to receiving XML documents, consumers must have ex-
pressed interest in receiving XML documents by registering
XPEs with the network. This problem statement is akin to
the well-known publish/subscribe matching problem. How-
ever, the main difference here is that in the case of data dis-
semination networks there exists no one single centralized
publish/subscribe system, but a network of content-based
routers (i.e., a network or federation of publish/subscribe
systems.) In the dissemination network, XML documents
are routed based on their content and not based on IP ad-
dress information, which is, due to the completely decou-
pled design, not available – all routing decisions are exclu-
sively based on content information. Figure 1 provides an
overview of the dissemination network this paper assumes.
In the overlay network depicted in Figure 1 each content-
based router, referred to as broker, only knows its neighbors
(i.e., in terms of IP network address information.) However,
none of the clients – neither data producers nor data con-
sumers know about each other or about the network topol-
ogy, except the router they connect to.

In the context of XML-based data dissemination, one
of the main challenges is the ability to efficiently de-
liver relevant XML documents to a large and dynamically
changing group of consumers. Centralized XML filter-

The 28th International Conference on Distributed Computing Systems

1063-6927/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDCS.2008.31

623

The 28th International Conference on Distributed Computing Systems

1063-6927/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDCS.2008.31

627

ing [3, 10, 7] and distributed query-based XML retrieval
approaches [6, 19, 18] have found wide-spread interest, but
do not address the distributed, content-based routing prob-
lem articulated above and addressed in this paper. ONYX
is a query-based XML retrieval approach [11] for XML
data dissemination in distributed environments. It is closely
related to our approach, but complementary in objectives.
ONYX aims at reducing the XML message size. ONYX
achieves this through only disseminating parts of an XML
message selected by subscriber queries. Several techniques
are presented and evaluated to achieve this objective. In
the context of our work, subscriber queries are meant to
select messages that match the query, however, the sub-
scriber requires the full message and not just parts of it.
It is therefore difficult to quantitatively compare both ap-
proaches. Content-based routing [5, 24, 9] in distributed
publish/subscribe architectures, have been studied for non-
XML-based data. Their operational model assumes sets
of attribute-value pairs joined by Boolean operators. It
is not at all obvious how to extend these approaches for
semi-structured data, especially due to the hierarchical data
model of XML.

Our own prior research on content-based routing [21,
14, 20, 8] develops architectures, algorithms and protocols
for content-based routing of non-XML based data. It is a
non-trivial problem, as we argue in this paper, to extend
these approaches to the hierarchical structure of XML. Our
prior work on developing efficient matching algorithms for
XML [16] addresses part of the problem, but does not ad-
dress the important problem of efficiently computing rout-
ing decisions, inducing advertisements from XML DTDs,
and determining covering and merging relations, which is
the focus of this research. This paper combined with our
earlier work on XML matching [16] comprises all compo-
nents required to build an efficient content-based router for
an XML data dissemination network. The research pre-
sented in this paper complements our PADRES content-
based publish/subscribe system effort [14, 1]. PADRES has
to date not investigated the routing of XML content against
XPEs.

In this paper, we develop algorithms for dissemination of
XML data throughout a network of content-based routers
towards data consumers who have specified their inter-
ests through XPEs. Our contributions are: first, we adapt
the use of advertisements to optimize data dissemination.
While this idea is common in the publish/subscribe litera-
ture [5, 24, 9], it is not clear how to extend the concepts
to the data model of XML. We demonstrate how to use the
XML Document Type Definition (DTD) to generate adver-
tisements about the information a data producer is going to
publish. We distinguish between a non-recursive and a re-
cursive case depending on the DTD defining the data emit-
ting source. We then develop advertisement-based routing

algorithms for both cases. Second, we propose a novel data
structure to maintain XPEs by identifying the covering re-
lations among them. We present covering algorithms for
XPEs to reduce the routing table size stored at each router
and speed up routing computation in the routers. Third, we
present an optimization of merging similar XPEs to further
reduce routing computation. Finally, we perform a detailed
experimental evaluation of our approach on an overlay net-
work comprised of 127 XML routers deployed over a clus-
ter with 20 nodes and deployed on PlanetLab. Our experi-
mental results demonstrate the effectiveness of the approach
by reducing the routing table size by up to 90% and improv-
ing the routing time by roughly 85%.

2. Background

2.1. Content-based Routing

Content-based publish/subscribe systems [5, 24, 9, 14, 1]
provide a flexible and extensible environment for informa-
tion exchange. Publishers and subscribers are clients to the
publish/subscribe system, are loosely coupled in space and
time, and have no knowledge of each other. Messages in
content-based publish/subscribe systems are routed based
on their content rather than the IP address of their destina-
tions. In order to handle a large amount of dynamic infor-
mation and reduce the network traffic many optimization
techniques, such as advertisements [5], covering technique
and merging technique [9, 5, 24] have proven to offer sig-
nificant benefits for non-XML based publish/subscribe sys-
tems. While conceptually, these ideas apply to XML-based
data as well, it is not obvious how to apply these concepts to
XML due to the structural complexity of XML data. These
are the challenges addressed by this paper.

PRT4

Sub1 4

Sub2 4

1

2

3 4

5

6

c

PRT4

Sub1 5

Sub2 6

c

Adv1

Pub1

c

Sub1

c

Sub2

SRT1

Adv1 c

PRT1

Sub1 3

SRT2

Adv1 3

PRT1

... ...

SRT3

Adv1 1

SRT4

Adv1 3

SRT5

Adv1 4

PRT5

Sub1 c

SRT6

Adv1 4

PRT6

Sub2 c

Publisher & Subscriber

XML Router

Figure 1. Content-based Routing

In advertisement-based publish/subscribe systems, ad-
vertisements are specifications of information that the pub-
lisher publishes in the future. Advertisements are flooded

624628

in the publish/subscribe overlay. The common assumption
is that the number of advertisements is much smaller than
the number of subscriptions and publications. Advertise-
ments are used to avoid broadcasting subscriptions in the
network, so that subscriptions are only routed to the pub-
lishers who advertise what the subscribers are interested in.
Subscriptions define filters to select publications of interest.
Matching publications are delivered to subscribers along the
paths built by subscriptions. Figure 1 shows a scenario for
advertisement-based content-based routing. The subscrip-
tion routing table (SRT) consisting of <advertisement, last-
hop>-tuples stores advertisements in order to route sub-
scriptions. Publications trace back along the path setup
by subscriptions to interested subscribers. The publication
routing table (PRT) maintains the path information. For ex-
ample, in Figure 1, advertisement adv1 is broadcast in the
network, and is stored on each broker of the network with
a different last hop. Consequently, subscriptions that match
adv1 are routed according to these last hops (e.g., sub1 is
routed along the link 5 − 4 − 3 − 1). Note that the sub-
scription sub1 is not forwarded to Brokers 2 and 6, respec-
tively, since adv1 indicates that matching publications are
from Broker 1. Therefore, publication pub1 is routed along
the reverse path 1 − 3 − 4 − 5 to the subscriber. In the
rest of this paper, we use the notations P (s) and P (a) to
refer to the set of publications that match subscription s and
advertisement a, respectively.

2.2. Covering and Merging

The goal of covering-based routing [5, 24] is to remove
redundant subscriptions from the network in order to obtain
a compact routing table and reduce the network traffic. In
Figure 1, if subscription sub1 covers subscription sub2 at
Broker 4, sub2 is not forwarded to Broker 3. That is, we
can safely remove sub2 at Broker 3 obtaining a compacter
routing table while maintaining the same information de-
livery behavior. All publications matching sub2 must also
match sub1. A formal definition of the covering relation is
as follows: A subscription sub1 covers sub2, if and only
if, P(sub1) ⊇ P(sub2), denoted as sub1 � sub2. The cov-
ering relation defines a partial order on the set of all sub-
scriptions with respect to �. Since advertisements have the
same format as subscriptions, the covering relations among
advertisements can be defined in the same manner.

If two subscriptions are not in a covering relation, but
their publication sets overlap with each other, the two sub-
scriptions can be merged to a more general subscription,
which covers the original subscriptions. Suppose subscrip-
tion subm is a merger of sub1 and sub2, then we have
P(subm) ⊇ P(sub1) ∪ P(sub2). There are two kinds of
mergers. If the publication set of the merger is exactly equal
to the union of the publication set of the original subscrip-

tions, the merger is a perfect merger; otherwise, if P(subm)
⊃ P(sub1) ∪ P(sub2), it is an imperfect merger. After merg-
ing, only the merger is forwarded into the network. The
merging technique [24] is used for further minimizing the
routing table size, since the merger may introduce new cov-
ering relations among subscriptions. Covering and merging
are complementary routing optimizations.

3. Advertisement-based Routing

Upon receiving a subscription, a broker matches the sub-
scription against its advertisements. If there is an advertise-
ment whose publication set overlaps that of the subscrip-
tion, it means there is a match between the subscription and
the advertisement. The broker then routes the subscription
to the broker where the advertisement came from.

3.1. XML-based Advertisements

In the context of XML/XPath routing, advertisements are
generated by exploiting DTD information. The purpose of a
DTD is to define the legal building blocks of an XML doc-
ument. The main building blocks of XML documents are
elements surrounded by tags, e.g., < root > ... < /root >,
where root is the element name in the document. All ele-
ments appearing in the XML document must be defined in
the corresponding DTD, which determines the structure of
elements and their sequence in the document. In this pa-
per, our discussion focuses on the main building block – el-
ements. Our approach could be easily extended to element
attributes and content [16], which we omit due to space lim-
itations.

In this paper, we use the common interpretation of an
XML document as a tree of nodes and consider each path
from the root node to a leaf node. Thus, we decompose
each XML document into a set of XML paths and each path
is represented as e = /t1/t2/.../tn, where ti is the XML el-
ement name. These paths are extracted from the document
before the publisher submits the document to the network.
Thus, a publication routed in our system is actually an XML
path annotated with a pathId and docId. This is transparent
to publishers and subscribers who handle entire XML doc-
uments. Publishers submit entire XML documents, com-
monly referred to as publications, and subscribers submit
XPath expressions (XPEs), commonly referred to as sub-
scriptions. We use the terms XPE and subscription inter-
changeably in the rest of this paper.

We use an absolute XPath expression without //-
operators as the format of advertisements in the context of
XML/XPath data routing. Note that this is not a restric-
tion of our subscription language. Advertisements are a
system internal mechanism, which is not exposed to the ap-
plication or to the user. An advertisement is described as

625629

a = /t1/t2/.../tn−1/tn, where ti can be either an element
name or a wildcard, and a has the same length as the pub-
lication it advertises. In our approach, advertisements are
derived from the DTD, since the DTD allows deriving all
possible paths from the root to the leaves appearing in re-
lated XML documents.

We call an advertisement a non-recursive advertisement
if it is extracted from a non-recursive DTD. The above ad-
vertisement a is an example of non-recursive advertisement.
A DTD is recursive if it contains elements that are defined in
terms of the elements themselves. The popular NITF DTD,
often used for experimentation, is recursive. We call an ad-
vertisement a recursive advertisement if it is extracted from
a recursive DTD. An advertisement may have multiple re-
cursive parts that appear in sequence or are embedded in
each other. We classify recursive advertisements into three
categories as described below.

Simple-recursive advertisements: A simple-recursive
advertisement has only one recursive pattern. The
advertisement is described as a = /t1/t2/.../ti−1

(/ti/.../tj)+/.../tn, where the + operator declares that el-
ements ti, ..., tj must occur one or more times in the adver-
tisement. Note that this is not part of XPath syntax. Adver-
tisements are only used within the system, so the extended
XPath syntax has no effect on clients and applications. In
the proposed algorithms, we use a = a1(a2)+a3 to simplify
the expression, where ak (1 ≤ k ≤ 3) is a non-recursive ad-
vertisement.

Series-recursive advertisements: A series-
recursive advertisement includes more than one re-
cursive pattern in sequence. For example, an ad-
vertisement containing two recursive patterns in se-
quence can be described as a = /t1/t2/.../ti−1

(/ti/.../tj)+/tj+1.../tl−1(/tl/.../to)+/.../tn, or as
simplified expression with non-recursive advertisements,
a = a1(a2)+a3(a4)+a5.

Embedded-recursive advertisements: An embedded-
recursive advertisement recursively embeds pat-
terns in other patterns. A possible case is a =
/t1/t2/.../ti−1(/ti/.../tl−1(/tl/.../to)+/.../tj)+/.../tn,
or a = a1(a2(a3)+a4)+a5. The embedded-recursive
advertisement can be more complex.

More types of recursive advertisements can be easily de-
fined based on the above three types of advertisements. We
discuss the matching algorithms for non-recursive and re-
cursive advertisements in Sections 3.2 and 3.3, respectively.

3.2. Non-recursive Advertisement

In this section, we discuss the algorithms for subscrip-
tions and non-recursive advertisements matching in the con-
text of XML/XPath. An advertisement a matches a sub-
scription s if the publication sets P (a) and P (s) overlap,

that is, P (a)
⋂

P (s) �= Φ. Figure 2(a) shows all possi-
ble relations between the two sets. To forward subscrip-
tions, we need to identify the first two overlapping cases in
Figure 2 (a). In this paper, we focus on the subscriptions
including parent-child operator (/), wildcard operator (*),
and ancestor-descendant operator (//). For other operators
appearing in the subscription, such as attribute filters, our
approach can be easily extended to support them through
value comparison. We discuss the matching algorithm for
the following three subscription cases.

P(a) P(s) P(s) P(a)

P(s) P(a)

P(s) P(a)

Adv Sub Overlap

* *

*

*

t

t

Y

Y

Y

Y

N

t t

t1 t2

(a) (b)

Figure 2. Adv. and Sub. Relations

Absolute simple XPEs: A simple XPE only contains
parent-child and wildcard operators. We describe the
matching algorithm for absolute XPEs (without //-operator)
and advertisements (AbsExprAndAdv). For example,
s = /st1/st2/.../stk and a = /at1/at2/.../atn, where sti
is the i-th element of s and atj is the j-th element of a. We
use this notation in all algorithms in this paper. First, the
algorithm does not have to be applied, if the given XPE is
longer than the advertisement. This observation is exploited
because the advertisement has the same length as its publi-
cations, and thus, publications in P (a) do not match all the
elements in the longer XPE. Next, the algorithm compares
each pair of elements or wildcards in the advertisement and
the subscription, according to the matching rules shown in
Figure 2(b). It returns 0, if some pair does not overlap; oth-
erwise it returns 1. For example, given a = /b/∗/∗/c/c/d
and s = / ∗ /c/ ∗ /b/c, the algorithm returns 0, since the
matching rules fail to satisfy for i = 4. As shown in Fig-
ure 2(b), the fifth row indicates that the advertisement in-
cludes an element c and the subscription includes an ele-
ment b at the same position that do not overlap. That is
publications matching the advertisement cannot match the
subscription.

Relative simple XPEs: These expressions are similar to
absolute simple XPEs except for the first operator, which
cannot be a “/”. That is the XPE is relative. The matching
could start at any position of the advertisement because the
subscription is relative. A naive matching algorithm for this
case is repeatedly calling AbsExprAndAdv. In iteration
i, the algorithm takes the subscription as an absolute one
and starts the matching from the i-th position of the adver-
tisement. We skip the details of the naive algorithm as it is

626630

straightforward. The complexity of the naive algorithm is
O(n ∗ k) where n is the length of the advertisement and k
is the length of the subscription. We propose an optimized
version of the matching algorithm for relative simple XPEs.

The matching algorithm for relative simple XPEs and
advertisements (RelExprAndAdv) is a string matching
problem [17]. We try to find the XPE, s, inside the adver-
tisement, a, by starting at the first element of a that matches
st1 and continue (i.e., comparing to st2 and so on) until we
either complete the match or find a mismatch. In the latter
case, we must go back to the place where we started. The
difference between the traditional string matching problem
and ours is that the wildcard “*” can match any element in
our matching rules, as shown in Figure 2(b). To improve
this algorithm, the KMP algorithm [17] is applied to reduce
the number of comparisons to O(n).

Descendant operators in XPEs: Descendant oper-
ators indicate that more than one element should ap-
pear in the matching advertisement. The matching al-
gorithm for XPEs with descendant operators and ad-
vertisements (DesExprAndAdv) is based on the above
XPE matching algorithms (i.e., AbsExprAndAdv and
RelExprAndAdv). We split the XPE in maximal length
sub-XPEs that do not contain any descendant operators,
and match each sub-XPE against the advertisement with se-
quence comparison. For instance, given a = /a/ ∗ /e/ ∗
/d/∗/c/b and s = ∗/a//d/∗/c//b, the algorithm matches
all sub-XPEs in s against a in order. It returns 1 because it
finds each sub-XPE ∗/a, d/ ∗ /c and b matches different
parts in a (e.g., a/∗, ∗/d/∗ and b).

3.3. Recursive Advertisement

Input: advertisement a = a1(a2)+a3, and subscription s

(ak , 1 ≤ k ≤ 3, is an advertisement)

Output: 1 if P (a)
⋂

P (s) �= Φ, 0 if P (a)
⋂

P (s) = Φ

01: If |s| ≤ |a1a2| then return AbsExprAndAdv(a1a2, s)
02: Else temp← AbsExprAndAdv(a1a2, /st1/.../st|a1a2|)
03: If temp = 0 then return 0
04: If |s| ≤ |a1a2a3| then q ← 0

05: Else q ← Int((|s| − |a1a2a3|)/|a2|) + 1

06: p← Int((|s| − |a1a2|)/|a2|)
07: For c = q : p do
08: temp← AbsExprAndAdv(a3, /stc∗|a2|+|a1a2|+1/.../st|s|)
09: If temp =1 then return 1
10: If c = p then

temp← AbsExprAndAdv(a2, /stc∗|a2|+|a1a2|+1/.../st|s|)
11: Else temp← AbsExprAndAdv(a2, /stc∗|a2|+|a1a2|+1/.../

st(c+1)∗|a2|+|a1a2|)
12: If temp =0 then return 0
13: Return 1

Figure 3. AbsExpr. & Simple RecAdv.

We focus on the matching of absolute XPEs and recur-
sive advertisements. The matching of other types of XPEs
and recursive advertisements can be implemented based
on this algorithm. In Figure 3, the matching algorithm
for absolute XPEs and simple recursive advertisements
(AbsExprAndSimRecAdv) calls AbsExprAndAdv if
the subscription is not longer than the recursive pattern
(Line 1). If the subscription is longer, the algorithm es-
timates the maximum number that the recursive pattern
would be repeated in the advertisement according to the
length of both subscription and advertisement (Lines 4-6).
Next, the algorithm tries all possible advertisements accord-
ing to the maximum number of repeated recursive patterns
(Lines 7-12). For example, given a = /a/ ∗ /c(/e/d)+/ ∗
/c/e and s = /∗/a/c/∗/d/e/d/∗, first, the algorithm com-
pares /a/∗/c/e/d in a with /∗/a/c/∗/d in s, and computes
q = 0 and p = 1 in Lines 4-6. Second, it supposes that the
recursive pattern is repeated only once, compares ∗/c/e in a
with e/d/∗ in s (Line 8) and fails to match. Next, it repeats
the recursive part e/d twice, and continues the comparison
(Line 11). Finally, it returns 1 (Line 9) if it finds a matches
s with double recursive patterns in a. The complexity of the
algorithm is O(n2), since it actually matches the subscrip-
tion against each possible advertisement without recursive
pattern. From a practical point of view, it is reasonable to
limit the maximum nesting depth of items in a document,
which would reduce the complexity of processing DTDs.

The matching algorithm for absolute XPE and series-
recursive advertisements (AbsExprAndSerRecAdv),
where a = a1(a2)+a3(a4)+a5, is implemented by call-
ing the algorithm from Figure 3 recursively. The match-
ing determines how many times the first recursive pat-
tern could be repeated, and calls the algorithm from Fig-
ure 3 repeatedly to try all possible advertisement for-
mats. The matching of XPE and embedded recursive
advertisements (AbsExprAndEmbRecAdv) is similar to
AbsExprAndSerRecAdv. First, it determines how many
times the outer recursive pattern could be repeated, and calls
AbsExprAndSerRecAdv (not restricted to two recursive
patterns) repeatedly.

4. Covering and Merging

In this section, first, we describe a novel data structure
called subscription tree for maintaining subscriptions. The
data structure captures the covering relations among sub-
scriptions and speeds up the covering detection. Second, we
present the covering algorithms for absolute simple XPEs,
relative simple XPEs, and XPEs with descendant operators.
Last, we explore the merging technique, and discuss the
merging rules in the context of XPEs.

627631

4.1 Subscription Tree

In covering-based routing, if an arriving subscription is
covered by an existing subscription in the routing table, the
new subscription is not forwarded to the next-hop broker.
On the other hand, if the arriving subscription covers exist-
ing subscriptions, before it is forwarded, the broker needs
to unsubscribe all the subscriptions that are covered by the
new subscription. Therefore, the network traffic is reduced
by removing the redundant subscriptions and the routing ta-
ble in the next-hop broker is compacted.

At each broker, subscriptions are maintained in a tree
data structure. The idea is to store the subscriptions accord-
ing to the covering relations among them. A subscription
at a node in the tree covers all subscriptions in its subtree.
Since a covering relation defines a partial order among sub-
scriptions, a tree data structure cannot capture all the cover-
ing relations. A subscription node can have only one parent
in the tree, but it may be covered by several subscriptions.
We allow each node having a set of super pointers, which
indicate the covering relations with nodes outside its sub-
tree, as shown in Fig 4. Super pointers are shortcuts to sub-
scriptions that the node covers. The tree and the super point-
ers form a directed acyclic graph (DAG) capturing the cov-
ering relations among subscriptions. With super pointers, a
node covers its subtree, the nodes with subtrees pointed to
by its super pointers, and the nodes with subtrees pointed to
by its offsprings’ super pointers.

The tree is maintained as follows. When a new subscrip-
tion arrives, a breadth first search traverses the tree in order
to find a place to insert the subscription. At a given node
the following three cases are distinguished.

Case 1: If the new subscription has no covering relation
with the node, the node’s siblings are searched. If neither
sibling has a covering relation with the new subscription,
the subscription is inserted as new sibling, After insertion,
super pointers maintained by the parent node are updated.
If there is a super pointer of the parent pointing to a sub-
scription that is also covered by the new subscription, then
the super pointer is moved from the parent node to the new
node.

Case 2: If the new subscription covers the current node,
the new subscription is inserted between the current node

/a

/a/b

/a/b/a

/a/c

/a/b/b /a/b/d /a/c/d

/*/b

/*/b//c

d/a

ROOT

/b

/b/e/b/d

/b/d/a /b/e/c/f

/a/*/d

Super Pointer

Figure 4. Subscription Tree

and its parent. As a result, the new subscription becomes
the parent of the current node, the old parent becomes the
new subscription’s parent. The old parent’s super pointers
are updated and moved to the new node, if there is a cov-
ering relation between the inserted subscription and a sub-
scription pointed to by the super pointer.

Case 3: If the new subscription is covered by the current
node, its children are searched until the new subscription is
inserted. If the current node is a leaf node, the new node is
inserted as the current node’s child.

Existing super pointers are maintained while inserting.
The new subscription may cause new covering relations
and new super pointers are added. Every time a new sub-
scription arrives, we add new super pointers into existing
nodes that cover the new subscription while searching the
tree. However, this becomes expensive when the subscrip-
tion tree grows larger. The reason we maintain the updated
super pointers is for covering-based routing. When a sub-
scription arrives, if it is not covered by existing subscrip-
tions but it covers a set of subscriptions, we need to un-
subscribe the subscriptions it covers and only forward the
new subscription to neighbors. In this case, we need the
super pointers to tell us what subscriptions should be un-
subscribed. That means the updating of super pointers can
be postponed to that point. The search space is reduced by
super pointers. Note that we only need to unsubscribe sub-
scriptions in the higher level of the tree since nodes in the
subtrees are covered and unsubscribed already.

In the worst case, it takes O(n) to identify the covering
relations and insert a subscription to the subscription tree.
For example, a subscription is covered by all subscriptions
which are organized in one path. If the subscription tree
created from a subscription workload is balanced, the best
case run time is O(log(n)), which is the height of the tree.

Optimizations for the subscription searching and inser-
tion can be performed based on the following two properties
of the subscription tree.

Property of an Absolute XPE node: For all the abso-
lute simple XPEs which have no wildcard and //-operators,
the children’s path length is always longer than their par-
ent’s path length. The parent is the prefix of its children.

Based on this property, we can perform depth-first search
for an XPE to find a start node which has the same length
as itself and start breadth-first search at that level. If an
absolute XPE has a wildcard or //-operator in the middle
of the expression, it is one or more levels higher than other
simple XPEs of the same length in the subscription tree.
Based on this property we can stop the search earlier.

Property of a Relative XPE node: A relative XPE is a
child node of either the root node or another relative node.
It will never be inserted in a subtree rooted by an absolute
XPE. This property reduces the search space in the sub-
scription tree.

628632

4.2. Covering Algorithm

The key problem is how to determine the relationship
between two given subscriptions. The covering relation be-
tween subscriptions is the containment problem in the con-
text of XPEs. It has been proven that containment of simple
path expressions can be tested in PTIME [23]. It is studied
as a part of the problem that checking/finding a prefix re-
placement for a simple query is in PTIME. In this section,
we detect covering relations of XPEs containing wildcard, /-
and //-operator in PTIME, and present covering rules and al-
gorithms for determining covering relations between single
path XPEs. We say Sub1 containing an element ti covers
Sub2 containing an element mi at the corresponding posi-
tion, if ti is a wildcard no matter what mi is, or ti = mi,
where none of ti and mi is a wildcard.

Absolute simple XPEs: The covering relation between
two absolute XPEs (without //-operator) is the simplest
case. We describe the covering algorithm for two absolute
XPEs (AbsSimCov) as below (e.g., s1 and s2). An im-
portant observation is that s1 must be shorter than s2 if s1

covers s2. This is exploited because a shorter XPE s has
less constraints on items in an XML document, and refers
to a bigger matching set P (s). Next, the algorithm com-
pares each pair of s1ti and s2ti in s1 and s2, respectively,
according to the covering rules.

Relative simple XPEs: The covering algorithm for rel-
ative simple XPEs (RelSimCov), e.g., s1 is relative, and
s2 is absolute or relative, calls AbsSimCov repeatedly to
determine if s1 contains subscription s2 or not. An abso-
lute XPE s1 can not cover a relative XPE s2, as the absolute
XPE definitely refers to a smaller matching set P (s1) than
P (s2).

It is important to note that the covering algorithm
RelSimCov is also a string matching problem, as we
pointed out in the RelExprAndAdv algorithm. The
covering algorithm uses covering rules that are different
from subscription and advertisement matching rules used in
RelExprAndAdv, however, a similar optimization can be
applied to reduce the complexity of the covering algorithm
from O(k ∗ n) to O(k).

Descendant operators in XPEs: In this section, we de-
scribe the covering algorithm for XPEs with descendant
operators (DesCov), where both s1 and s2 can be rela-
tive or absolute. It splits the XPE into sub-XPEs without
//-operator, and matches each sub-XPE in s1 against sub-
XPEs in s2 with sequence comparisons. First, it guarantees
that s2 is longer than s1. Next, it matches the first sub-XPE
in s1 against s2 according to different types of s1 and s2.
The algorithm moves to the next sub-XPE in s1 if it finds a
match, and moves to the next sub-XPE in s2 if it does not
find a match. For example, given s1 = / ∗ /a// ∗ /c and
s2 = /a/a/ ∗ //c/e/c/d, first, the algorithm compares the

sub-XPE / ∗ /a in s1 with the sub-XPE /a/a/∗ in s2. Sec-
ond, it moves to the next sub-XPE ∗/c in s1 and compares
it with ∗ in s2. Next, it compares ∗/c in s1 with the next
sub-XPE c/e/c/d in s2, and finally, it returns true since the
end of s1 is reached and a match is found. Generally speak-
ing, a sub-XPE in s1 could not match a part of s2 that in-
cludes a //-operator. For instance, given s1 = / ∗ /a// ∗ /c
and s2 = /a/a/ ∗ //c/b/d, the sub-XPE ∗/c in s1 does
not cover ∗//c in s2 since ∗/c refers to a smaller matching
set. However, there is a special case that the sub-XPE s1i

in s1 could cover a part of s2 that includes a //-operator if
s1i ended with a wildcard and the matched part in s2 ended
with //t, where t can be either a wildcard or an element. For
example, given s1 = /a/ ∗ // ∗ /d and s2 = /a//b/c/d,
first, the algorithm compares /a/∗ in s1 with /a//b in s2,
where flag = 1 is used to record the current sub-XPE in s1

matches a part of s2 with //-operator. Second, it moves to
the next sub-XPE ∗/d in s1 and compares it with c/d in s2.
Finally, it returns true since a match is found.

It is important to note that the covering detection
between non-recursive advertisements is the same with
the covering detection for subscriptions, since the non-
recursive advertisement has the same format with an abso-
lute simple subscription.

4.3. Merging

/a

/a/b

/a/b/a

/a/c

/a/b/b /a/b/d /a/c/d

/*/b

/*/b//c

d/a

ROOT

/b

/b/e/b/d

/b/d/a /b/e/c/f

/a/*/d

Super Pointer

/a/b/*

/b/*

Figure 5. Subscription Tree

If there is no covering relation among a set of subscrip-
tions, subscriptions can be merged into a new subscription
to create a more concise routing table. In this section, we
exploit the merging rules for XPEs.

In the subscription tree, child nodes of the same parent
have a better chance to be merged. As shown in Fig 5, node
/a/b/a, /a/b/b and /a/b/d can be merged and they are
represented by a new node /a/b/∗ which is a union of the
original XPEs. There was a super pointer pointing to node
/a/b/d before merging. This pointer should be removed
because there is no covering relation between the pointer
owner and the merger. If two nodes are merged, their sub-
trees become siblings of the merger. For example in Fig 5,

629633

after /b/d and /b/e are merged to /b/∗, their children are
the new node’s children. The super pointer at /b/d/a was
not changed. To perform the merging in the subscription
tree, we define several merging rules.

The subscriptions can be merged if they have only one
difference (e.g., different elements). For instance, two sub-
scriptions s1 = a/∗/c/d and s2 = a/∗/c/e can be merged
into s = a/ ∗ /c/∗. Note that if they differ in one opera-
tor, they should be in a covering relation to each other. The
general form of this rule is:

• s1 = o1 t1... oi ti oi+1 m oi+2 ti+1...on+1 tn• s2 = o1 t1... oi ti oi+1 k oi+2 ti+1...on+1 tn

are merged to
• s = o1 t1... oi ti oi+1 ∗ oi+2 ti+1...on+1 tn

where m and k are different elements, oi is either a /-
operator or a //-operator, and ti is a wildcard or an element.
The number of merging candidates in this rule is not limited
to 2.

Another rule is to merge subscriptions with two differ-
ences (e.g., different operators or different elements). For
example, two subscriptions s1 = /a/c/ ∗ /∗ and s2 =
/a//c/ ∗ /c that do not cover each other can be merged
to s = /a//c/ ∗ /∗. That is, different operators are merged
to //-operator, and different elements are merged to ∗. We
represent the general form of this rule as:

• s1 = o1 t1... oi ti oi+1 m... oj+1 tj / tj+1...on+2 tn• s2 = o1 t1... oi ti oi+1 k... oj+1 tj // tj+1...on+2 tn

are merged to
• s = o1 t1... oi ti oi+1 ∗... oj+1 tj // tj+1...on+2 tn

where m, k and ti is a wildcard or an element, and oi is a
/-operator or a //-operator.

A more general rule is to replace the different parts in
two subscriptions with the //-operator. We generalize this
rule to:

• s1 = o1 t1... oi ti XPE1 oi+1 ti+1...on tn• s2 = o1 t1... oi ti XPE2 oi+1 ti+1...on tn

are merged to
• s = o1 t1... oi ti // ti+1...on tn

where XPE1 and XPE2 are different XPath expressions,
ti is a wildcard or an element, and oi is a /-operator or a
//-operator. This rule is applied if most parts in two sub-
scriptions are equal, otherwise, more false positives will be
introduced.

We periodically apply the above merging rules on the
subscription tree to aggregate nodes that could be merged.
We can compute an imperfect merging degree if each broker
in the network knows the DTD relative to the XML data
producer. An imperfect merger was first introduced in [20].
The imperfect degree of a new merger s, derived from s1,
s2,..., sn, is:

Dimperfect =
|P (s) − ∪n

i=1P (si)|
|P (s)|

It measures the imperfectness of an individual new merger.
If the publications are distributed uniformly, the bigger
the imperfect degree, the more false positive are intro-
duced by the new merger. For example, two subscriptions
s1 = /a/ ∗ /c/d and s2 = /a/ ∗ /c/e can be merged into
s = /a/∗/c/∗. If the corresponding DTD indicates that the
elements a, b, c, d, e are allowed at the fourth position, 60%
false positive will be introduced at position 4. We need to
consider the distribution of other elements in the subscrip-
tion, e.g., the probability of each element appearing at other
positions, to compute the total number of false positive in-
troduced. Based on the DTD information, if Dimperfect is
0, the merger is a perfect merger, and no false positives are
introduced in this case. The false positives are not delivered
to subscribers. They only occur in the network introduced
due to imperfect merging. Clients are not exposed to false
positives.

5. Evaluation

In this section, we experimentally evaluate the perfor-
mance of our routing and covering algorithms. All algo-
rithms are implemented in C++. We perform all experi-
ments on a local cluster of 20 nodes and on PlanetLab. Each
node in the cluster has an Intel Xeon 2.4GHz processor with
2GB RAM. For generating the XPE workload, we use the
XPath generator released by Diao et al. [10]. Queries are
distinct, and we set the maximum length of an XPE to 10.
We use the IBM XML Generator [2] to create the XML doc-
ument workload. We use default parameters in this genera-
tor except that we set the maximum number of levels of the
resulting XML documents to 10, which is consistent with
the maximum length of XPEs. We use two different DTDs:
the NITF (News Industry Text Format) DTD and the PSD
(Protein Sequence Database) DTD. The performance met-
rics we measure include routing table size, XPE processing
time and publication routing time in a single broker. We
compare the network traffic (i.e., number of messages) and
notification delay (i.e., the time between issuing a publica-
tion and receiving a notification) in two broker topologies
with 7 brokers and 127 brokers, respectively. We also de-
ployed our system on PlanetLab and measured the notifica-
tion delay to validate the scalability of our approach.

Routing Table Size (RTS): Our algorithms exploit the
covering relations among XPEs. To verify this fact, we gen-
erate two data sets for NITF which include 100,000 XPEs
each. We vary the probability of “∗” occurring at a location
step (W) and the probability of “//” occurring at a location
step (DO) to generate two data sets A and B with different
covering rates 90% and 50%, respectively. For each data
set, we evaluate the effect of the covering optimization on
routing table size. The routing table size is the number of
XPEs in the table. As shown in Figure 6, for Set A, the rout-

630634

ing table size is reduced dramatically by covering. The sub-
scriptions in Set A have a higher degree of overlap. The re-
sults suggest that the covering algorithm performs better on
data sets with higher degree of overlap. That is, the cover-
ing technique achieves more benefit when subscribers have
similar interests.

Merging can further reduce the routing table size by
merging some XPEs according to our merging rules. When
Dimperfect is 0, the merger is a perfect merger. Figure 7
shows that applying perfect merging reduces the routing ta-
ble size to 87%. When Dimperfect increases, more XPEs
can be merged. For instance, the routing table is compacted
to 67% with Dimperfect equal to 0.1.

XPE Processing Time: We measure the XPE processing
time of the covering algorithm. In covering-based routing,
we first check the covering relationship when an XPE ar-
rives at a broker. If the XPE is covered by existing XPEs,
it will not be forwarded. Otherwise, we match the XPE
against all advertisements and determine where to route it
to. Without covering algorithm, every XPE needs to be
matched against all advertisements in order to be forwarded.
We issue 5000 XPEs, and Fig. 8 shows the processing time
per XPE. Each data point in Fig. 8 is the average processing
time for 500 XPEs. Although detecting covering relations
takes extra time, the experiment shows that the XPE pro-
cessing time is less in covering-based routing, which avoids
matching the covered XPEs against advertisements. For ex-
ample, among the 5000 PSD XPEs, 90% of the XPEs are
covered. The more XPEs are covered, the greater the im-
provement we achieve. Covering-based routing improves
the XPE processing time of NITF XPEs by up to 49.2%,
which is more than for the PSD XPEs. The reason is
because the number of advertisements generated from the
NITF DTD is 35 times larger than that of the PSD DTD.
As a result, we benefit more from avoiding advertisement
matching, especially when the broker has a large number of
advertisements.

Publication Routing Time: In this experiment, we eval-
uate the covering-based routing time of each message us-
ing data sets A and B. Note that the performance of non-
covering-based routing in the original system has been eval-
uated against YFilter [10] in our previous work [16]. For
some scenarios (i.e., the XPE workload with a high per-
centage of matched expressions, and with many wildcards
and descendant operators), our system outperformed YFil-
ter. For a contrasting workload with a very low match-
ing percentage, YFilter outperformed us. We generate 500
XML documents and extract 23,098 publications from these
documents. Table 1 shows the routing time of the publi-
cations against 100,000 XPEs. The measurements are ob-
tained by averaging the time taken to route all publications.
Both Set A and Set B exhibit benefits, derived from sub-
scription covering. After applying the covering algorithm,

the routing time for Set A and Set B are reduced by 84.6%
and 47.5%, respectively. The merging technique generates
a more compact routing table, with which we can further
improve the publication routing time.

Method Set A (ms) Set B (ms)

No Covering 13.96 14.23

Covering 2.15 7.47

Perfect Merging 1.87 6.88

Imperfect Merging 1.27 6.38

Table 1. Publication Routing Performance

Network Traffic: The network traffic can be influenced
by the broker topology, the distribution of subscribers and
publishers, and the routing strategy. In this experiment, we
investigate the impact of advertisement-based routing and
covering techniques on network traffic, given a tree-like
broker topology. The broker overlay network is a tree in
which each broker is connected to 2 subordinate brokers.
We build two overlays for the experiment. One has three
levels, which consists of 7 brokers. The other broker over-
lay has seven levels with 64 leaf brokers, and 127 brokers in
total. Each leaf broker is connected with a subscriber. We
extend the size of the broker network to show the scalability
of our approach. Publishers randomly connect to the broker
overlay.

Method Network Traffic Delay (ms)

no-Adv-no-Cov 58,138 29.02

no-Adv-with-Cov 50,931 7.50

with-Adv-no-Cov 39,849 28.9

with-Adv-with-Cov 38,492 7.45

with-Adv-with-CovPM 25,789 5.15

with-Adv-with-CovIPM 26,146 3.92

Table 2. 7 Broker Network

Method Network Traffic Delay (ms)

no-Adv-no-Cov 654,871 97.82

no-Adv-with-Cov 572,890 20.74

with-Adv-no-Cov 398,810 98.09

with-Adv-with-Cov 326,796 20.89

with-Adv-with-CovPM 254,900 16.78

with-Adv-with-CovIPM 257,567 12.24

Table 3. 127 Broker Network

In this experiment, we compare routing strategies with
different optimization techniques, including the routing
with neither advertisement nor covering technique (no-Adv-

no-Cov), the routing with covering only (no-Adv-with-Cov),
the routing with advertisement only (with-Adv-no-Cov), the
routing with both advertisement and covering techniques

631635

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 20000 40000 60000 80000 100000
Number of Xpath Queries

R
ou

tin
g

T
ab

le
 s

iz
e

(#
 o

f X
P

at
h

Q
ue

rie
s)

No Covering(Set A and B)
50% Covering (Set A)
90% Covering (Set B)

Figure 6. RTS

0

10000

20000

30000

40000

50000

0 20000 40000 60000 80000 100000
Number of Subscriptions

R
ou

tin
g

T
ab

le
 S

iz
e

Covering (Set B)

 Perfect Merging(Set B)

Imperfect Merging(Set B)

Figure 7. RTS

0

20

40

60

80

100

120

140

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Subscriptions

T
im

e
 (

m
s
)

NITF XPath with covering

NITF XPath without covering

PSD XPath with covering

PSD XPath without covering

Figure 8. Process Time

(with-Adv-with-Cov), the routing with advertisement, covering
and perfect merging (with-Adv-with-CovPM), and the routing
with advertisement, covering and imperfect merging (with-

Adv-with-CovIPM). We generate 1,000 distinct XPEs for each
subscriber using the PSD DTD, and 50 XML documents
for the publishers. 4,182 publications are extracted from
these documents. Table 2 and Table 3 show the total num-
ber of messages in the two broker overlays generated by
one publisher. These messages, including advertisements,
publications and subscriptions, are received by all brokers
in the network under different routing strategies. As can
be seen, the two advertisement-based routing methods sig-
nificantly reduce the network traffic, because in this case
a subscription is not flooded, and it is only forwarded to
brokers that are on a path from the subscriber to poten-
tial publishers. The introduction of advertisements reduces
the network traffic to 68.5% and 75.6% for non-covering-
based and covering-based routing strategies, respectively.
Moreover, applying both advertisement-based routing and
covering-based routing techniques can reduce the overall
network traffic to 66.2% and 49.9% in the two topologies.
The experiment suggests that using advertisements to avoid
subscription flooding and removing redundant queries by
exploring covering and merging relations among subscrip-
tions can reduce network traffic, save system resources and
reduce the publication routing delay. Note that since im-
perfect merging may introduce false positives, the network
traffic due to imperfect merging increases by 1.38% and
by 1.04% in the two overlays, respectively. Overall, we
achieve more benefit in a larger broker network. The scala-
bility of the system is improved.

False Positives from Imperfect Merging: If the sys-
tem allows a larger error tolerance, more subscriptions can
be merged. An imperfect merger may match more publica-
tions than expected. Therefore, a larger Dimperfect means
that the system allows more false positives. We show the
relation between Dimperfect and false positives in Figure 9.
The larger Dimperfect is, the greater the number of matched
publications, among which some are false positives intro-
duced by imperfect mergers. If the system tolerates up to
2% of false positives, a Dimperfect with value less than 0.1

can satisfy the requirement. False positives only occur in
the network and are not delivered to clients. Thus, they in-
duce overhead but do not violate the subscription semantic
expected by clients.

Notification Delay on PlanetLab: In this experiment,
we measure the notification delay on PlanetLab and demon-
strate the scalability of our system. Due to the performance
variation on PlanetLab nodes, which in our experiment is
up to 15% per data point, we average the results from four
experimental runs, as shown in Fig. 10 and Fig. 11. We
setup a broker network with the maximum end-to-end dis-
tance equal to 7 hops. We measure the notification delay
from publishers to subscribers for different number of bro-
ker hops and different XML document sizes. The exper-
iment shows that the notification delay in covering-based
routing is reduced by up to 74% compared with the rout-
ing without covering for both NITF and PSD documents.
Moreover, the notification delay is linear in the number of
hops. In covering-based routing, it increases less with the
number of hops than in the content-based routing without
covering. The reason is that the routing table size along the
routing path has been reduced by the covering technique, as
a result, the XML document matching time at each hop de-
creases, for instance, the routing table size is reduced to 6%
for PSD XPEs. The result also indicates that the larger the
document the longer the notification delay. A larger docu-
ment saves more matching time with a condensed routing
table. Therefore, the larger the document, the greater the
improvement in routing delay we can achieve from the cov-
ering technique.

6. Related Work

A large body of work has focused on developing
publish/subscribe-style matching algorithms for evaluating
an XML message against a set of XPEs [3, 10, 7, 4]. How-
ever, all these approaches exclusively address centralized
matching architectures, not the distributed, content-based
XML dissemination networks we address in this work.
While matching is an integral step in a content-based router,
other routing operations studied in this paper are equally

632636

0

2

4

6

8

0 0.05 0.1 0.15 0.2

Imperfect Degree

F
al

se
 P

os
iti

ve
 (

%
)

Figure 9. False Positives

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6
Number of Hops

N
o
ti
fi
c
a
ti
o
n
 D

e
la

y
(m

s
)

PSD XML (2K) with covering
PSD XML (2K) without covering
PSD XML (10K) with covering
PSD XML (10K) without covering
PSD XML (20K) with covering
PSD XML (20K) without covering

Figure 10. PSD XML

0

5

10

15

20

25

30

2 3 4 5 6
Number of Hops

N
o
ti
fi
c
a
ti
o
n
 D

e
la

y
(m

s
)

NITF XML (2K) with covering

NITF XML (2K) without covering

NITF XML (20K) with covering

NITF XML (20K) without covering

NITF XML (40K) with covering

NITF XML (40K) without covering

Figure 11. NITF XML

important in a distributed data dissemination architecture.
Thus, our work complements matching algorithms for the
design of a content-based XML router.

Advertisement-based techniques for optimizing content-
based routing have been developed in the area of distributed
publish/subscribe [5, 24, 9]. It has been demonstrated that
the network traffic and routing table size can be reduced
by using different routing strategies, including advertising,
covering and merging techniques. However, the main dif-
ferences between these approaches and our approach lie
in the subscription language and publication data format.
Our approach is based on the hierarchical, tree-based XPath
and XML model; while the traditional content-based rout-
ing approaches operate with attribute-value pairs and pred-
icate constraints over these pairs. The advertising carried
out by XML and XPath data sources is different and more
complex than predicate-based languages, for the hierarchi-
cal and recursive structure of the model needs to be taken
into account. A DTD of an XML document does not have
an equivalent in traditional publish/subscribe approaches.
Galanis et al. [15] explore XML data dissemination based
on a DHT. They use data summaries to ensure that queries
are only sent to relevant servers. These data summaries
could be taken as a form of advertisements. The data sum-
mary is generated from an XML document, so the expres-
siveness of the data summary is part of the DTD. Our con-
tribution is to generate a complete advertisement set once
from a DTD for all related XML documents.

The query aggregation scheme given in [6] addresses the
problem of determining a compact set of XPEs from a given
set of XPEs. This problem is similar to the covering and
merging problem discussed in this paper. We think it could
be used for the same purposes. However, it should guaran-
tee the equivalence between the compact set and the origi-
nal set. That is, the aggregate query set does not introduce
or control false positives (i.e., takes XML documents not
originally matched) or false negatives (i.e., misses XML
documents originally matched.) These are non-trivial ex-
tensions to their work. Furthermore, the tree aggregation
approach does not address the generation of advertisements

from DTDs, which is central to our approach.

Recent research has focused on XML data dissemina-
tion [18, 11, 25, 19, 13]. Koloniari el al. [18] present a
decentralized approach for XML dissemination in a peer-
to-peer network. However, in their approach queries are
severely restricted in that no wildcards are allowed. Koudas
et al. [19] propose a flexible routing protocol for XML
routers to enable scalable XPath query and update process-
ing in a data-sharing peer-to-peer network. Both approaches
are solutions to the location problem. The location prob-
lem states that given a dynamic collection of XML database
servers and an XPath query, find the databases that contain
data relevant to the query. Our approach evaluates an XML
document against a set of XPath queries, and decides where
to route the XML document.

ONYX [11] describes an architecture to deploy XML-
based services on an Internet-scale. The approach is based
on performing incremental message transformations to re-
duce message size instead of sending and receiving the en-
tire XML message, published by a data source. ONYX only
delivers the parts of the message actually selected by the
data sinks’ subscribing queries. For many applications, this
approach is not feasible, as the entire message published
by a source needs to be delivered in its entirety to all sub-
scribing data sinks, which is the message delivery semantic
realized by our system and algorithms. To further reduce
message size and processing cost, ONYX investigates var-
ious representations for XML messages. While a binary
message representation will certainly speed up XML mes-
sage processing, we have found in prior work that XML
processing, such as parsing, is not the dominating cost for
an XML router [16] and optimizations of that component
are therefore of questionable utility in this context. ONYX
uses an NFA-based operator network for representing rout-
ing tables. This approach supports the sharing of common
prefixes among queries. Our approach goes beyond this by
identifying all covering relations among queries processed
when constructing the routing tables, so that all covered
queries are eliminated completely from the routing compu-
tation. Moreover, our work introduces merging and adver-

633637

tising for XML data not addressed in the earlier approach.
Our unique contribution is to enable these techniques for the
XML data model, which is fundamentally different from
the data models underlying non-XML-based content rout-
ing approaches, such as [5, 24, 9]. XTreeNet [13] elegantly
unifies the publish/subscribe and the query/response model
in an XML-aware overlay network. XTreeNet proposes a
dissemination protocol to avoid repeatedly matching XML
data against queries at intermediate routers. This is an or-
thogonal optimization that our approach can also employ by
attaching the path of overlay hops to the XML query when
the subscription tree is constructed in the network. XML
messages only match against the queries at the first router,
and are forwarded along the subscription paths to the sub-
scribers.

Theoretical properties of XPE containment are discussed
in [22, 12]. They propose their own algorithms to detect
the covering relations and give the computational complex-
ity analysis for these algorithms, but none of them apply
advertisement-based routing for XML dissemination. They
do not consider XPE merging either.

7. Conclusions

In this paper, we studied the problem of efficiently
routing XML data through a data dissemination network
comprised of an overlay network of content-based routers.
In the dissemination network, publishers’ DTD files are
transformed into advertisements expressed using XPath-
like expressions. An advertisement creates a spanning
tree rooted at the publisher. Subscribers specify XPath
filters which are forwarded along the reverse paths of this
tree for intersecting advertisements. XML documents
from publishers are forwarded along these routing paths to
subscribers with matching XPEs. By defining and exploit-
ing covering and merging relations for XPEs, a compact
routing table results. Our techniques improve the routing
time at each broker by up to 85% in the most favorable
cases. Our experiments demonstrate that the scalability of
the system is improved by applying advertisement-based
routing, covering, and merging techniques for routing XML
documents in a data dissemination network.

Acknowledgments: The completion of this research
was made possible thanks to Bell Canada’s support through
its Bell University Laboratories R&D program. This re-
search was also funded in part by CA, CFI, IBM, NSERC,
OCE, OIT, and Sun.

References

[1] The PADRES content-based publish/subscribe system
web site. http://padres.msrg.toronto.edu/

Padres/.
[2] A.L.Diaz and D.Lovell. XML generator, Sept. 2003.
[3] M. Altinel and M. J. Franklin. Efficient filtering of XML

documents for selective dissemination of information. In
VLDB, 2000.

[4] N. Bruno, L. Gravano, and N. Doudas. Navigation-vs.
index-based XML multi-query processing. In ICDE, 2003.

[5] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing
scheme for content-based networking. In INFOCOM, 2004.

[6] C. Chan, W. Fan, and P. Felber. Tree pattern aggregation for
scalable XML data dissemination. In VLDB, 2002.

[7] C. Chan, P. Felber, and M. Garofalakis. Efficient filtering of
XML documents with XPath expressions. In ICDE, 2002.

[8] A. K. Y. Cheung and H.-A. Jacobsen. Dynamic load balanc-
ing in distributed content-based publish/subscribe. In Mid-
dleware, 2006.

[9] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-
based infrastructrue and its application to the development
of the OPSS WFMS. IEEE TSE, 2001.

[10] Y. Diao, M. Altinel, and M. J. Franklin. Path sharing and
predicate evaluation for high-performance XML filtering.
ACM Trans. Database Syst., 2003.

[11] Y. Diao, S. Rizvi, and M. Franklin. Towards an internet-
scale XML dissemination service. In VLDB, 2004.

[12] X. Dong, A. Halevy, and I. Tatarinov. Containment of nested
XML queries. In Technical Report UW-CSE-03-12-05, Univ.
of Washington, 2003.

[13] W. Fenner, M. Rabinovich, K.K.Ramakrishnan, D. Srivas-
tava, and Y. Zhang. XTreeNet: Scalable overlay networks
for XML content dissemination and querying (synopsis).
In Proceedings of the 10th International Workshop on Web
Content Catching and Distribution, 2005.

[14] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski. The
PADRES distributed publish/subscribe system. In ICFI,
2005.

[15] L. Galanis, Y. Wang, S. Je, and E. DeWitt. Locating data
sources in large distributed systems. In VLDB, 2003.

[16] S. Hou and H.-A. Jacobsen. Predicate-based filtering of
XPath expressions. In ICDE, 2006.

[17] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern
matching in strings. SIAM Journal on Computing, 1977.

[18] G. Koloniari and E. Pitoura. Content-based routing of path
queries in peer-to-peer systems. In EDBT, 2004.

[19] N. Koudas, M. Rabinovich, and D. Srivastava. Routing
XML queries. In ICDE, 2004.

[20] G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to
routing, covering and merging in publish/subscribe systems
based on modified binary decision diagrams. In ICDCS,
2005.

[21] G. Li and H.-A. Jacobsen. Composite subscriptions in
content-based publish/subscribe systems. In Middleware,
2005.

[22] G. Miklau and D. Suciu. Containment and equivalence for a
fragment of XPath. J. ACM, 2004.

[23] T. Milo and D. Suciu. Index structures for path expressions.
In ICDT, 1999.

[24] G. Mühl. Large-scale content-based publish/subscribe sys-
tems. Ph.D Dissertation, University of Darmstadt, Septem-
ber 2002.

[25] A. C. Snoeren, K. Conley, and D. K. Gifford. Mesh-based
content routing using XML. SIGOPS Oper. Syst. Rev., 2001.

634638

