
XML Routing in Data Dissemination Networks

Guoli Li Shuang Hou Hans-Arno Jacobsen
University of Toronto, Canada �gli@cs, shou@cs, jacobsen@eecg�.utoronto.ca

1. Introduction

XML-based data dissemination networks are starting to be-
come a reality. In a dissemination network, data, marked-up
in XML, is routed based on filter expressions stored at inter-
mediate nodes that indicate where the XML document is to be
routed to. Filter expressions, often expressed as XPath expres-
sions (XPEs), are submitted by data consumers who express
interest in receiving certain kinds of documents. For instance,
a globally operating insurance company with many branch of-
fices distributed world-wide is linked by an overlay network
of content-based routers that comprise the XML dissemina-
tion network. An insurance claim, an insurance bid, or a re-
quest for proposal can be submitted anywhere into the overlay
network (e.g., by a third party insurance broker or an online
client) and be routed toward a currently online, specific expert
employee, speaking the same language as the requester. Note,
the latter constraints are expressed as XPE filter expressions
against which the XML document is evaluated in transit. This
design fully decouples information requesters and information
providers, avoids a single point of control and a single point of
failure, and increases scalability due to decentralization and
distribution.

This paper addresses the XML/XPath content-based rout-
ing problem. More specifically, this paper focuses on the prob-
lem of efficiently routing an XML document emitted from a
data producers at one point in the network to a set of data con-
sumers located anywhere throughout the network. Prior to re-
ceiving XML documents, consumers must have expressed in-
terest in receiving XML documents by registering XPEs with
the network. This problem statement is akin to the well-known
publish/subscribe matching problem. However, the main dif-
ference here is that in the case of data dissemination networks
there exists no one single centralized publish/subscribe sys-
tem, but a network of content-based routers (i.e., a network or
federation of publish/subscribe systems.) In the dissemination
network, XML documents are routed based on their content
and not based on IP address information, which is, due to the
completely decoupled design, not available – all routing de-
cisions are exclusively based on content information. Fig. 1
provides an overview of the dissemination network this paper
assumes. In the overlay network depicted in Fig. 1 each bro-
ker only knows their neighbors (i.e., in terms of IP network

address information.) However, none of the clients – neither
data producers nor data consumers know about each other or
about the network topology, except the router they connect to.

In the context of XML-based data dissemination, one of
the main challenges is the ability to efficiently deliver rele-
vant XML documents to a large and dynamically changing
group of consumers. Centralized XML filtering [5, 3, 9] and
distributed query-based XML retrieval approaches [6, 11, 10]
have found wide-spread interest, but do not address the dis-
tributed, content-based routing problem articulated above and
addressed in this paper. Content-based routing [2, 16, 4, 14, 7]
in distributed publish/subscribe architectures, have been stud-
ied for non-XML-based data. Their operational model as-
sumes sets of attribute-value pairs joined by Boolean opera-
tors. It is not at all obvious how to extend these approaches for
semi-structured data, especially due to the hierarchical data
model of XML.

Our own prior research on content-based routing [14, 7, 12]
develops architectures, algorithms and protocols for content-
based routing of non-XML based data. It is a non-trivial prob-
lem, as we argue in this paper, to extend these approaches to
the hierarchical structure of XML. Our prior work on devel-
oping efficient matching algorithms for XML [9] addresses
part of the problem, but does not address the important prob-
lem of efficiently computing routing decisions, inducing ad-
vertisements from XML DTDs, and determining covering and
merging relations, which is the focus of this research. This pa-
per combined with our earlier work on XML matching com-
prises all components required to build an efficient content-
based router for an XML data dissemination network.

In this paper, we sketch algorithms for dissemination of
XML data throughout a network of content-based routers
towards data consumers who have specified their interests
through XPEs. The full details of our algorithms are pre-
sented in [13]. We adapt the use of advertisements to op-
timize data dissemination from non-XML-based routing sys-
tems. While this idea is common in the publish/subscribe liter-
ature [2, 16, 4, 14, 7], it is not known how to extend these con-
cepts to the data model underlying XML. We demonstrate how
to use the XML Document Type Definition (DTD) to generate
advertisements about the information a data producer is go-
ing to publish. We develop advertisement-based routing algo-
rithms and propose a novel data structure to maintain XPEs by
identifying the covering relations between them. We present

1-4244-0803-2/07/$20.00 ©2007 IEEE 1400

1C

2

3 4

5

6

C
Adv 1

Pub
1

SRT
1

SRT
3

Adv
1

1

SRT 4

SRT
2

SRT
5

SRT
6

Sub 1

PRT
5

PRT
4

PRT
1

PRT 2

...
..

.

PRT
6

C

Sub
2

Sub
2 C

Sub
2

6Sub 2 4

XML Router

C Publisher/Subscriber

Sub
1

4

PRT 3
Adv 1 3

Sub
1

3

Adv
1 C 4Adv

1

Sub
1

Sub
1

Adv
1

Adv 1

5

3

4

C

Figure 1. Content-based Routing

covering algorithms for XPEs to reduce the routing table size
stored at each router and speed up routing computation. We
present an optimization of merging similar XPEs to further re-
duce routing computations.

2. Content-based Routing

Content-based publish/subscribe systems [2, 16, 4] pro-
vide a flexible and extensible environment for information
exchange. Messages in content-based pub/sub systems are
routed based on their contents rather than the IP address of
their destinations. In order to handle a large amount of dy-
namic information and reduce the network traffic, many opti-
mization techniques, such as advertisements [2] and covering
and merging techniques [4, 2, 16], have proven to gain signif-
icant benefits for non-XML based publish/subscribe systems.
While conceptually, these ideas apply to XML-based data as
well, it is not obvious how to apply these concepts to XML.
This is the challenge addressed by this paper.

In advertisement-based publish/subscribe systems, adver-
tisements are specifications of information that the publisher
will publish in the future. Advertisements are flooded in the
publish/subscribe overlay. The common assumption is that
the number of advertisement is much less than that of sub-
scriptions and publications. Advertisements are used to avoid
broadcasting subscriptions in the network, so that subscrip-
tions are only routed to the publishers who advertise what the
subscribers are interested in. Subscriptions define filters on
publications. Later on, only matching publications will be de-
livered to subscribers along the paths built by subscriptions.
Fig. 1 shows a scenario for advertisement-based content-based
routing. The subscription routing table (SRT) consisting of
�advertisement, last-hop� tuples stores advertisements in or-
der to route subscriptions. Publications will trace back along
the path setup by subscriptions to interested subscribers. The
publication routing table (PRT) maintains the path informa-
tion. For example, in Fig. 1, ���� is broadcast in the network,
and is stored on each broker of the network with a different

last hop. Consequently, subscriptions that match ���� will be
routed according to these last hops (e.g., ���� is routed along
the link �������). Note that the ���� will not be forwarded
to brokers 2 and 6 since the ���� indicates that the publisher
is from broker 1. Therefore, the ���� is routed along a re-
verse path � � � � � � � to the subscriber. In the rest of this
paper, we use the notations 	 ��� and 	 ��� to refer to the set
of publications that match subscription � and advertisement �,
respectively.

The goal of covering-based routing [2, 16] is to remove re-
dundant subscriptions from the network in order to maintain
a compacted routing table and reduce the network traffic. In
Fig. 1, if ���� covers ����, at broker 4, ���� will not be for-
warded to broker 3. That is, we can safely remove ���� on
broker 3 and gain a compacter routing table while maintaining
the same information delivery behavior, for all the publica-
tions matching ���� must match ����. Since advertisements
have the same format as subscriptions, the covering relations
among advertisements can be defined in the same way.

If two subscriptions do not have covering relations, but their
publication sets overlap each other, the two subscriptions can
be merged to a more general subscription, which covers the
original subscriptions. Suppose ���� is a merger of ���� and
����, then we have P(����) � P(����) � P(����). There are
two kinds of mergers. If the publication set of the merger is
exactly equal to the union of the publication set of the orig-
inal subscriptions, the merger is a perfect merger; otherwise,
if P(����) � P(����) � P(����), it is an imperfect merger.
After merging, only the merger is forwarded into the network.
The merging technique [16] is used for further minimizing the
routing table size. It is an extension of the covering technique.

3. Related Work

A large body of work has focused on developing
publish/subscribe-style matching algorithms for evaluating an
XML message against a set of XPEs [5, 3, 1]. However, all
these approaches exclusively address centralized matching ar-
chitectures, not the distributed, content-based XML dissemi-
nation networks we address in this work. While matching is
an integral step in a content-based router, other routing opera-
tions studies in this paper are equally important in a distributed
data dissemination architecture. Thus, our work complements
matching algorithms for the design of a content-based XML
router.

Advertisement-based techniques for optimizing content-
based routing have been developed in the area of distributed
publish/subscribe [2, 16, 4]. It has been demonstrated that
the network traffic and routing table size can be reduced by
using different routing strategies, including advertising, cov-
ering and merging techniques. However, the main differences
between these approaches and our approach lie in the subscrip-
tion language and publication data format. Our approach is
based on the hierarchical, tree-based XPath and XML model;
while the traditional content-based routing approaches oper-
ate with attribute-value pairs and predicate constraints over

1-4244-0803-2/07/$20.00 ©2007 IEEE 1401

these pairs. The advertising carried out by XML and XPath
data sources is different and more complex than predicate-
based languages, for the hierarchical and recursive structure
of the model needs to be taken into account. A DTD of an
XML document does not have an equivalent in traditional pub-
lish/subscribe approaches. Galanis et al. [8] explore XML data
dissemination based on a DHT. They use data summaries to
ensure that queries are only sent to relevant servers. These
data summaries could be taken as a form of advertisements.
The data summary is generated from a XML document, so the
expressiveness of the data summary is limited to part the DTD.
Our contribution is to generate a complete advertisement set
once from a DTD for all related XML documents.

Recent research has focused on XML data dissemina-
tion [10, 6, 11]. Koloniari el al. [10] present a decentralized
approach for XML dissemination in a peer-to-peer network.
However, in their approach queries are severely restricted in
that no wildcards are allowed. Koudas et al. [11] propose a
flexible routing protocol for XML routers to enable scalable
XPath query and update processing in a data-sharing peer-to-
peer network. Both approaches are solutions to the location
problem. The location problem states that given a dynamic
collection of XML database servers and an XPath query, find
the databases that contain data relevant to the query. Our ap-
proach evaluates an XML document against a set of XPath
queries, and decides where to route the XML document. Diao
et al. [6] aim at deploying XML-based services on an Internet-
scale, and provide a detailed architectural design for such a
system. The NFA used in this work for matching naturally
supports a form of specialized covering as XPEs with a com-
mon prefix share the NFA path taken while evaluating an input
XML message against the XPEs indexed. In addition to prefix
covering our approach identifies all cover relations among the
XPEs processed and completely eliminates all covered XPEs
from the routing computation. Moreover, our work introduces
merging and advertising for XML data not addressed in the
earlier approach.

4. Content-based XML Routing

In terms of XML document and XPath query routing, the
concepts of advertisement, covering, and merging have not
been studied. In this section, first, we present the definition
and format of advertisement for XML content and give some
examples. We also describe how the covering and merging
techniques are applied in this context. The detailed discussion
can be found in [13].

Definition of Advertisement In the context of XML/XPath
routing, the advertisement is generated by exploiting DTD in-
formation. The purpose of a DTD is to define the legal build-
ing blocks of an XML document. The main building blocks of
an XML documents are elements surrounded with tags, e.g.,
� ���� � ��� � ����� �. ���� is the element name in the
documents. All elements appearing in the XML document
must be defined in the corresponding DTD, which determines
the structure of elements and their sequence in the document.

In our approach, advertisements are derived from the DTD,
since the DTD contains all possible paths from the root to the
leaves appearing in related XML documents. A fragment of
a DTD, personal.dtd, is shown in the Fig. 2 (a). It is used
to define the structure and corresponding content of an XML
document. Fig. 2 (c) shows the XML conforming to the DTD
from Fig. 2 (a), which contains the actual data, e.g., person id,
name (including family name and given name), email, URL
and link (superior and subordinate). Here, our discussion fo-
cuses on the main building block: elements. Our approach can
be easily extended to element attributes and content.

In this paper, we use the common interpretation of an XML
document as a tree of nodes and consider each path from the
root node to a leaf node. Thus, we decompose each XML doc-
ument into a set of XML paths and each path is represented
as � � �������������, where �� is the XML element name.
These paths are extracted from the document before the pub-
lisher submits the document to the network. Thus, a publica-
tion routed in our system is actually an XML path annotated
with a pathId and docId. This is transparent to publishers and
subscribers who handle entire XML documents. Publishers
submit entire XML documents, commonly referred to as pub-
lications, and subscribers submit XPath expressions (XPEs),
commonly referred to as subscriptions. We use the terms XPE
and subscription interchangeably in the rest of this paper.

We use the abstract XPath expression without //-operators
as the format of advertisement in the context of XML/XPath
data routing. Note that this is not a restriction of our
subscription language. Advertisements are a system in-
ternal mechanism, which is not exposed to the applica-
tion or the user. An advertisement is described as � �
������������������, where �� can be either an element name
or a wildcard, and � has the same length as the publication
it advertises. All advertisements extracted from personal.dtd
are listed in Fig. 2 (b). For example, the advertisement,
�	��
������	��
������������ indicates a path from
the root element, 	��
�����, to one of the leaves, �����,
appearing in the XML document in Fig. 2 (c).

We call an advertisement a non-recursive advertisement if it
is extracted from a non-recursive DTD. Advertisement � is an
example of non-recursive advertisement. A DTD is recursive
if it has some element that is defined in terms of itself, directly
or indirectly, e.g., the NITF DTD is recursive. We define an
advertisement as a recursive advertisement if it has recursive
elements defined in a DTD. An advertisement may have multi-
ple recursive parts that appear in sequence or are embedded in
each other. We classify the recursive advertisements to three
categories as below.

Simple-recursive advertisements: There is only one re-
cursive pattern in the simple-recursive advertisement. It is de-
scribed as � � ��������������� ������������

��������, where the
� operator declares that elements ��� ���� �� must occur one or
more times in the advertisement. Note that this is not part of
XPath syntax, and advertisements are only used within the sys-
tem, so the extended syntax has no effect to the clients and ap-

1-4244-0803-2/07/$20.00 ©2007 IEEE 1402

<!-- <?xml encoding="US-ASCII"?> -->
<!-- Revision: 60 1.2 data/personal.dtd, docs, xml4j2, xml4j2_0_0_d04 -->
<!ELEMENT personnel (person)+>
<!ELEMENT person (name,email*,url*,link?)>
<!ATTLIST person id ID #REQUIRED>
<!ELEMENT family (#PCDATA)>
<!ELEMENT given (#PCDATA)>
<!ELEMENT name (#PCDATA|family|given)*>
<!ELEMENT email (#PCDATA)>
<!ELEMENT url EMPTY>
<!ATTLIST url href CDATA #REQUIRED>
<!ELEMENT link EMPTY>
<!ATTLIST link
 manager IDREF #IMPLIED
 subordinates IDREFS #IMPLIED>

(a)

/personnel/person
/personnel/person/name
/personnel/person/name/family
/personnel/person/name/given
/personnel/person/email
/personnel/person/url
/personnel/person/link

(b)

<?xml version='1.0'?>
<!DOCTYPE personnel SYSTEM 'personal.dtd'>
<!-- msg_banner -->
<personnel>
 <person id="a0">
 <name>level 2<family>level 3</family>
 </name>
 <email>level 2</email>
 </person>
 <person id="a1">
 <name>level 2<given>level 3</given>
 </name>
 <email>level 2</email>
 <url href="defaultCDATA0"/>
 <link subordinates="a1" manager="a0"/>
 </person>
</personnel>

(c)

Figure 2. DTD, Corresponding Advertisements and XML Document

plications. In the proposed algorithms, we use � � ������
���

to simplify the expression, where �� (� � � � �) is a non-
recursive advertisement.

Series-recursive advertisements: A series-recursive
advertisement can include more than one recur-
sive patterns in sequence. For example, the ad-
vertisement containing two recursive patterns in se-
quence can be described as � � ���������������
������������

��������������������������
��������, or more

simplified expression with non-recursive advertisements,
� � ������

�������
���.

Embedded-recursive advertisements: In an
embedded-recursive advertisement, recursive patterns
can be embedded in others. A possible case is � �
��

���������
��������,

or � � ���������
����

���. The embedded-recursive
advertisement could be more complicated.

More types of recursive advertisements can be easily de-
fined based on the above three types of advertisements. The
matching algorithms for non-recursive and recursive adver-
tisements are presented in [13].

Covering and Merging In this section, we fucus on
advertisement-based subscription routing and its optimization
techniques, such as covering and merging, the matching be-
tween XPE and XML data has been discussed in [9].

First, a novel data structure, called subscription tree, is

/a

/a/b

/a/b/a

/a/c

/a/b/b /a/b/d /a/c/d

/*/b

/*/b//c

d/a

ROOT

/b

/b/e/b/d

/b/d/a /b/e/c/f

/a/*/d

Super Pointer

/a/b/*

/b/*

Figure 3. Subscription Tree

presented for maintaining subscriptions. The data structure
captures the covering relations among subscriptions. It can
speed up the publication and subscription matching as well.
In covering-based routing, if an arriving subscription is cov-
ered by an existing subscription in the routing table, the new
subscription is not forwarded to the next-hop broker. One the
other hand, if the arriving subscription covers existing sub-
scriptions, before it is forwarded, the broker needs to unsub-
scribe all the subscriptions that are covered by the new sub-
scription. Therefore, the network traffic is reduced by remov-
ing the redundant subscriptions and the routing table in the
next-hop broker is compacted. Subscriptions are maintained in
a tree data structure. The idea is to store the subscriptions ac-
cording to the covering relationship among them. A subscrip-
tion at a node in the tree covers all subscriptions in its subtree.
Since a covering relation defines a partial order among sub-
scriptions, a tree data structure cannot capture all the covering
relations. A subscription node can have only one parent in the
tree, but it may be covered by several subscriptions. We al-
low each node having a set of super pointers, which indicate
the covering relations with nodes outside its subtree, as shown
in Fig. 3. Super pointers are shortcuts to subscriptions that the
node covers. With super pointers, a node covers its subtree, the
nodes with subtrees pointed to by its super pointers, and the
nodes with subtrees pointed to by its offsprings’ super point-
ers. The maintenance of the tree and existing super pointers
while inserting, and optimizations for subscription searching
and insertion are described in detail in [13].

Second, we describe how to determine the covering rela-
tionship between two given subscriptions. The covering rela-
tion between subscriptions is the containment problem in the
context of XPEs. It has been proven that containment of sim-
ple path expressions can be tested in PTIME [15]. It is stud-
ied as a part of the problem that checking/finding a prefix re-
placement for a simple query is in PTIME. We detect covering
relations of XPEs containing wildcard, /- and //-operator in
PTIME, and present covering rules for determining covering
relation between single path XPEs. The covering rules used
in our algorithms are as follows. We say ���� containing an
element �� covers ���� containing an element �� at the cor-

1-4244-0803-2/07/$20.00 ©2007 IEEE 1403

responding position, if �� is a wildcard no matter what �� is,
or �� � ��, where neither �� nor �� are wildcards. The algo-
rithms for detecting covering relation among absolute XPEs,
relative XPEs and XPEs with descendant operators are pre-
sented in [13].

Third, we exploit the merging rules for XPEs. If there is
no covering relation among a set of subscriptions, subscrip-
tions can be merged into a new subscription to create a more
concise routing table. In the subscription tree, child nodes of
the same parent have a better chance to be merged. As shown
in Fig. 3, node ������, ������ and ������ can be merged
and they are represented by a new node ������ which is a
union of the original XPEs. There was a super pointer point-
ing to node ������ before merging. This pointer should be
removed because there is no covering relations between the
pointer owner and the merger. If two nodes are merged, their
subtrees become siblings of the merger. For example in Fig. 3,
after ���� and ���� are merged to ����, there children are
the new node’s children. The super pointer at ������ was not
changed. To perform the merging in the subscription tree, we
define several merging rules (for details see [13].) The idea
of these merging rules is to generate a more general operator
(e.g., //-operator) or an element (e.g., wildcard) in the merger.
Therefore, a more compact routing table is created since many
subscriptions with common parts are merged to this merger.

5. Evaluation

We experimentally evaluate the performance of our rout-
ing, covering and merging algorithms. We use two different
DTDs: the NITF (News Industry Text Format) DTD and the
PSD (Protein Sequence Database) DTD to generate data. First,
we evaluate the effect of the covering optimization on the rout-
ing table size. For the data set with higher degree of overlap,
the routing table size is reduced significantly due to covering.
Consequently, the routing times at each broker are improved
by up to 85% in the most favorable cases because of a more
compact routing table, which is generated by removing redun-
dant XPEs due to covering. We also investigate the impact of
advertisement-based routing and covering techniques on net-
work traffic. Our experiments suggest that advertisements can
be used to avoid flooding of XPath queries, and thus reduce
the overall network traffic. In our experiments by up to 76%.
Moreover, removing redundant queries by exploring covering
relations among subscriptions reduces the network traffic and
saves system resources.

6. Conclusion

In this paper, we have studied the problem of efficiently
routing XML data through a data dissemination network com-
prised of an overlay network of content-based routers. In the
dissemination network, publishers’ DTD files are transformed
into advertisements expressed using XPath-like expressions.
An advertisement creates a spanning tree rooted at the pub-
lisher. Subscribers specify their XPath filters which are for-

warded along the reverse paths of intersecting advertisements,
i.e., those may have potentially interesting XML documents.
XML documents from publishers are forwarded along the re-
verse paths of matching XPEs to interested subscribers. Our
contributions are: first, we discuss the advertisement-based
routing protocol for XML-based data dissemination networks.
Advertisements are generated from a DTD file and can be ap-
plied for all related XML documents. We discuss both re-
cursive and non-recursive advertisements extracted from DTD
files. Moreover, we propose a set of algorithms for the match-
ing of advertisement and XPE. Second, we present some al-
gorithms to determine the covering relations between to arbi-
trary XPEs, and a novel data structure called subscription tree
to maintain the XPEs in an XML router, which maintains the
covering relationship among XPEs. The routing time at each
broker are improved dramatically because the covering rela-
tionship are fully explored among XML queries to reduce the
routing table size. Third, we also propose some rules to merge
similar XPEs in order to further reduce the routing table size.
The evaluation results suggest that the scalability of the system
has been improved by applying advertisement-based routing,
covering, and merging techniques.

References

[1] N. Bruno, L. Gravano, and N. Doudas. Navigation-vs. index-
based XML multi-query processing. In ICDE, 2003.

[2] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing
scheme for content-based networking. In INFOCOM, 2004.

[3] C. Chan, P. Felber, and M. Garofalakis. Efficient filtering of
XML documents with XPath expressions. In ICDE, 2002.

[4] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-
based infrastructrue and its application to the development of
the OPSS WFMS. IEEE TSE, 2001.

[5] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer.
Path sharing and predicate evaluation for high-performance
XML filtering. ACM Trans. Database Syst., 2003.

[6] Y. Diao, S. Rizvi, and M. Franklin. Towards an internet-scale
XML dissemination service. In VLDB, 2004.

[7] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski. The
PADRES distributed publish/subscribe system. ICFI’05, UK.

[8] L. Galanis, Y. Wang, S. Je, and E. DeWitt. Locating data sources
in large distributed systems. In VLDB, 2003.

[9] S. Hou and H.-A. Jacobsen. Predicate-based filtering of XPath
expressions. In ICDE, 2006.

[10] G. Koloniari and E. Pitoura. Content-based routing of path
queries in peer-to-peer systems. EDBT, 2004.

[11] N. Koudas, M. Rabinovich, and D. Srivastava. Routing XML
queries. ICDE, 2004.

[12] G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to rout-
ing, covering and merging in publish/subscribe systems based
on modified binary decision diagrams. ICDCS, 2005.

[13] G. Li, S. Hou, and H.-A. Jacobsen. Routing of XML and XPath
queries in data dissenmination networks. In Technical Report,
U. of Toronto, Oct,2006.

[14] G. Li and H.-A. Jacobsen. Composite subscriptions in content-
based publish/subscribe systems. In Middleware’05,France.

[15] T. Milo and D. Suciu. Index structures for path expressions. In
ICDT, 1999.

[16] G. Mühl. Large-scale content-based publish/subscribe systems.
Ph.D Dissertation, University of Darmstadt, 2002.

1-4244-0803-2/07/$20.00 ©2007 IEEE 1404

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

