L-ToPSS - Push-oriented Location-based
Services*

Toana Burcea and Hans-Arno Jacobsen

Department of Electrical Engineering and
Department of Computer Science
University of Toronto
{ioana, jacobsen}Qeecg.toronto.edu

Abstract. The advance in wireless networks and in positioning sys-
tems has led to a new class of mobile applications: location-based services
(LBS). LBS offer highly personalized services to mobile users based on
their locations, user profiles and static and dynamic content informa-
tion. The publish/subscribe paradigm is an information dissemination
model appropriate for the implementation of LBS. However, existing
publish/subscribe systems do not include location information in their
models. In this paper we present an extension for the publish/subscribe
paradigm that can effectively support push-oriented LBS.

1 Introduction

The proliferation of mobile devices and the significant increase of data on the
Internet has led to the development of a new generation of mobile applications
that offer highly personalized services to mobile users. One of the most powerful
ways to personalize mobile services is based on the location of the mobile client.
Knowing the geographic position of the mobile user at any given time adds a new
dimension to the types of offered services. Thus, location-based services (here-
after referred to as LBS) represent information services that exploit the location
information of mobile terminals to offer highly customized information content to
mobile users. Examples of LBS include: requesting the nearest business or service
(e.g., the nearest restaurant or ATM), receiving proximity-based reports (e.g.,
traffic/weather /news reports) or proximity-based notifications (e.g., e-coupons,
advertisements), payment based on proximity, tracking resources or assets, and
location-based games.

Based on the information delivery method, we identify two types of LBS:
push and pull-based services. Pull-based services rely on the traditional re-
quest /response paradigm, where the client browses the available services and
sends a specific request to the server. The server locates the user and answers to

9 4th VLDB Workshop on Technologies for E-Services (TES’03)
* This research is partially funded by IBM Toronto Lab, Center for Advanced Studies,
Canada

his request considering the specific location information. In push-based applica-
tions, the infrastructure autonomously pushes information to mobile terminals
based on user profiles/subscriptions and their current location.

In pull-based LBS, clients have to poll the server for any information updates,
which may lead to server resource contention and network overload. Furthermore,
mobile systems like cell phones, PDAs and wearable computers are less suitable
for browsing and query-based information retrieval due to their limited input
device capabilities. The current trend toward even smaller devices will amplify
this problem. Moreover, energy represents a scarce resource for mobile devices,
therefore, they are better suited as passive listeners than as active tools for
searching information.

The limitations presented above may be effectively addressed by a push-
oriented LBS model. Push-oriented LBS offer highly personalized information
to their users notifying them about events that match both their profiles / sub-
scriptions and their current location. For example, a user can be interested in
receiving information about his favorite books. He can subscribe to a targeted
advertising LBS specifying his interests. While walking through the city, he can
receive on his mobile device an advertisement that says his favorite book is on
sale at the next corner bookstore. This kind of services would be widely accepted
and used only if the information is highly relevant to the user. We believe that
profile and subscription-based techniques represent effective means to achieve
this goal.

The research challenges implied by this kind of applications refer to infor-
mation processing. The middleware platform supporting such applications must
filter information for potentially millions of users [8], given their continuously
changing location information, their profiles/subscriptions and, moreover, dy-
namic and static content information. We argue that this kind of services can
be supported extremely well by an architecture based on the publish/subscribe
paradigm. The paradigm has recently gained a significant interest in the database
community as support for information dissemination applications [1,4,6] for
which other models turned out to be inadequate.

In publish/subscribe systems, clients are autonomous components that ex-
change information by publishing events and by subscribing to events of interest.
In these systems, publishers act as information producers, while subscribers act
as information consumers. A publisher usually generates a message when it wants
the external world to know that a certain event has occurred. All subscribers
that have previously expressed their interest in receiving such an event will be
notified about it. The central component of this architecture is the event broker.
This component records all subscriptions in the system. When a certain event is
published, the event broker matches it against all subscriptions in the system.
When the incoming event verifies a subscription, the event broker notifies the
corresponding subscriber.

Due to the scalability of publish/subscribe systems in terms of number of

supported clients and number of processed events per second [6], we believe that
this is an extremely promising approach for push-oriented LBS.

L-ToPSS (Location-aware Toronto Publish/Subscribe System) is our research
prototype that provides LBS in a push-oriented style, correlating content provider
data, user profiles and continuously changing location information. In our sys-
tem, content provider data is modeled as publications, while user profiles rep-
resent, subscriptions. More formally, the problem that we address in this paper
can be expressed as follows: given a set of mobile or stationary publishers P and
their publications, a set of mobile or stationary subscribers S and their subscrip-
tions, and continuously changing location information L about mobile entities
in the system, the notifications about the matching publications are sent to the
subscribers only when they are close by the corresponding publishers.

This paper is organized as follows. In the next section we briefly present some
examples of LBS applications from which we derive an LBS taxonomy used to
classify the problem space. Section 3 discusses the L-ToPSS research prototype
and its architecture. In Section 4 we describe our experimental platform. Section
5 presents the related work. Section 6 concludes with the experience gained
during the design of our model.

2 LBS - From applications to taxonomy

Generally speaking, LBS provide and deliver information to its users in a highly
selective manner exploiting mobile terminal location information. Examples of
applications comprise route planning applications (e.g., finding the shortest path
between two locations), enhanced directory assistance (e.g., finding the nearest
restaurant or ATM), location-aware advertisement (e.g., ads are targeted to con-
sumer within a certain radius of one of the retailer’s locations), safety services
(e.g., tracking the location of mobile 911 callers), resource management (e.g.,
tracking and dispatching mobile resources) and so on. In this section we briefly
describe some LBS applications that can benefit from the push-oriented style of
the service.

Location-aware mobile commerce allows clients to purchase goods or
services from retailers that are close to their current location. Thus, a location-
based coupon service can send special offers to clients according to their profiles
or preferences. Thus, clients do not have to periodically check the offers, as
they are notified about them when they pass within a certain distance of the
retailer’s location. In this cases, the information provider has a fixed, known
location, while the information requester is mobile. Moreover, the retailer’s offer
can be valid for an extended period of time or only at its release time.

Proximity-based alerts inform users about certain events of interest to
them. For example, a user can be informed about an accident that has occurred
on the highway 2 miles ahead. Based on this information, the user can request
an alternative route to his destination. This kind of information is characterized
by its momentary validity.

Common profile matching services allow users to be notified when a per-
son with a compatible profile is in the area. Similarly, a buddy finder applications

can notify users when a member of the family or a friend is nearby. In these sce-
narios, both users are mobile.

Inferring from the applications presented above, we classify the LBS based
on two dimensions: the mobility scenario of the information provider (publisher)
and information requester (subscriber) and the type of the publication.

Based on entities mobility, we distinguish three categories of scenarios that
are presented in Table 1, where stationary means that the entity has a fixed,
known location, while mobile refers to an entity that changes its location. Note
that the case where both the publisher and the subscriber are stationary is not
interesting from the LBS point of view. This case is addressed in traditional
publish/subscribe systems.

Table 1. Mobility scenarios and application examples.

Publisher Subscriber Application

Stationary Mobile Targeted advertising
Mobile Stationary Airport automatic check-in
Mobile Mobile Friend finder

According to the life-time of the publication in the system, there are two
different cases: instantaneous publications - the publication is valid only at its
publication time, it is matched against the existing subscriptions, then discarded
! _ and long-lived publications - the publication inserted into the system is per-
sistent until a corresponding delete command is performed by the publisher such
that subscriptions submitted at a later point are matched against this publica-
tion. Table 2 presents examples of applications for each category.

Table 2. Publication types and application examples.

Publication type Application
Instantaneous Location-based games
Long-lived Targeted Advertisement

3 L-ToPSS - System Model and Architecture

L-ToPSS (Location-aware Toronto Publish/Subscribe System) is our research
prototype. The issue of obtaining location updates of mobile clients is indepen-
dent of the system behavior and it is beyond the scope of our research [16]. We
assume that the system can periodically receive location information about its
users as (latitude, longitude, altitude) coordinates. With the advances in posi-
tioning technologies, we believe that getting location updates does not represent
an issue anymore.

! In current publish/subscribe systems, the publications are always instantaneous.

3.1 System Model

The main component of the system is the filtering engine that matches the pub-
lications against the subscriptions in the system. In the model we propose, the
publications describe real life objects, such as books that, for example, can be
characterized by title, author, and edition. This type of information can be rep-
resented by semi-structured data used in traditional publish/subscribe systems.
In our system, the publication is expressed as a list of attribute-value pairs. The
formal representation of a publication is given by the following expression: {(as,
valy), (a2, valz), ..., (an, val,)}. For the book example presented above, the
publication can be expressed as:

{ (title, “Location-based service”), (author, “H-A.Jacobsen”), (edition, 2008)}.

The subscriptions describe user interests or user profiles. In our system, sub-
scriptions are represented as conjunctions of simple predicates. Each predicate
expresses a value constraint for an attribute name. For example, the predicate
(edition > 2000) restricts the value of the attribute “edition” to a value greater
than 2000. In a formal description, a simple predicate is represented as (at-
tribute_name relational_operator value). A predicate (a rel_op val) is matched by
an attribute-value pair (a’, val’) if and only if the attribute names are identi-
cal (a = a’) and the (a rel_op val) boolean relation is true. In our system, a
subscription s is matched by a publication p if and only if all its predicates are
matched by some pair in p.

If either the publisher or the subscriber is stationary, we assume that the
publication or the subscription, respectively, is associated with the fixed location
of the corresponding entity. The location information is expressed as (latitude,
longitude, altitude) coordinates. Similarly, when an entity is mobile, the infor-
mation it produces contains the Mobile Identification Number (MIN) - a unique
identifier of the mobile device.

subscription

Location Matching

Engine
Filtering Engine > | (MIN, latitude, longitude, Location Locat:ion Updates

Local

1 altitude) Staging
| Repository

Fig. 1. L-ToPSS System Architecture

3.2 System Architecture

The system architecture is depicted in Figure 1. First, we explain how the sys-
tem works for the stationary publisher-mobile subscriber case. Then, we argue
that the mobile publisher-stationary subscriber scenario can be treated symmet-
rically. Finally, we present the mobile publisher-mobile subscriber case.

Both subscriptions and publications are sent to the filtering engine. When
a subscription is matched by a publication, a location constraint that contains
the MIN of the subscriber and the (latitude, longitude, altitude) coordinates of
the publisher is sent to the location matching engine. This component stores the
location constraints, as well as the associations with the subscriptions and the
publications that have generated them.

If the publication is a long-lived one, it is stored in a local repository. In
this way, subscriptions entering the system will be matched against the existing
publications in the repository. For each match, a location constraint is created
in the same way as explained above and then, it is sent to the location match-
ing engine. The location constraint is kept in the location matching engine as
long as the publication exists in the system. Conversely, if the publication is
instantaneous, it is not stored in the system. The instantaneous publication and
the location constraints that it produces are discarded after a period of time
equal to the duration of a cycle of location updates (i.e., the time needed for
receiving and processing the location updates for all connected clients). This
means that in order to receive notifications about instantaneous publications,
interested subscribers have to be in the area of the publisher at the moment
when the publication is issued.

The system periodically receives updates of users’ location. This information
is processed in the location staging component. Each location information is rep-
resented as a (user_MIN, current_latitude, current_longitude, current_altitude)
tuple. This tuple is forwarded to the location matching engine that matches it
against the location constraints in the system. A tuple (user_MIN, current_latitude,
current_longitude, current_altitude) matches a location constraint (MIN, lati-
tude, longitude, altitude) if and only if MIN = user_MIN and the distance?
between the two points determined by (current_latitude, current_longitude, cur-
rent_altitude) and (latitude, longitude, altitude) does not exceed a certain value.
If a location constraint is matched, this means that the corresponding subscriber
is close to a point of interest for him. Therefore, the system will send a notifica-
tion to the user about the publication associated with the location constraint.
The notification is sent to the mobile device identified by the MIN. After the
notification is sent, the location constraint is deleted. In this way, the user will
be notified at most once about a publication, avoiding sending the user the same
piece of information over again.

The mobile publisher-stationary subscriber case can be modeled symmetri-
cally. In this case, the static location is associated with the subscription, while
the MIN is contained in the publication. The system processes the information in

% The distance can be expressed as a function defined by the subscriber

the same way as in the previous case. In this scenario, the stationary subscriber
will be notified when the publisher comes nearby.

For the mobile publisher-mobile subscriber case, each entity has associated
a MIN: MIN,,;, and MIN,,,. In this case, the location constraint contains
only the (MINpy,, MINg,) tuple and it is associated with the corresponding
publication and subscription. For each MIN that appears in the location con-
straints, the system stores the last location update and the timestamp when it
was received. The location matching proceeds as follows. When a location up-
date (MINy,latitude,longitude, altitude) enters the system, the corresponding
location information and the timestamp are updated. Moreover, for all the loca-
tion constraints (M INy, MIN,), the system checks if the last location received
for M INs is close to that of M IN; and also if the timestamps are close in time.
If this is the case, the appropriate subscriber is notified about the publication
associated with the location constraint.

Both the publisher and the subscriber can retrieve their publication or sub-
scription, respectively. When a publication or a subscription is deleted, all the
corresponding location constraints have to be deleted.

3.3 Information Processing

In this subsection we present the sequence of operations that correspond to
information processing in the system, i.e., subscriptions, publications, location
updates. The operations are considered in the stationary publisher - mobile sub-
scriber case.

Insert publication: insert a long-lived publication in the system
Input: publication P, location of the stationary publisher (lat,,long,,alt,)

— store the publication P in the local repository
— match the publication P against the subscriptions in the system and retrieve
the set of all matching subscriptions {(MINy,, Sk,), (MINy,, Sk,),
., (MINy, , Sk,)}
— create the corresponding location constraints { (MINy, , Sk,, P, lat,, long,y,
alty), (MINy,, Sk,, P, lat,, long,. alty), ..., (MIN, , Sk,., P,
lat,, longp, alty,)} and send them to the location matching engine

Delete publication: delete a publication from the system
Input: publication P

— delete P from the local repository
— delete all location constraints that are associated with P from the location
matching engine
Match publication: send an instantaneous publication to the system
Input: publication P, location of the stationary publisher (lat,,long,, alt,)

— match the publication P against the subscriptions in the system and retrieve
the set of all matching subscriptions {(MINy,, Sk,), (MINy,, Sk,),
-» (MINy,,, Sk,)}

— create the corresponding location constraints { (M INg,, Sk,, P, laty, longy,
alty), (MINy,, Sk,, P, lat,, long,, alty), ..., (MIN, , Sk,., P,
lat,, longy, alt,)} and send them to the location matching engine speci-
fying that the publication is instantaneous

Insert subscription: insert a subscription in the system
Input: subscription S, mobile identification number MIN

— store the subscription in the filtering engine

— query the local repository and retrieve the set of all matching publications
{(Py,, laty, long,, alty), (P, laty,, long,, alty), ..., (B, , lat, ,
long;, , alt;)}

— create the corresponding set of location constraints {(MIN, S, P, , lat,,
long, , alt;,), (MIN, S, P,, lat,,, long,, alty,), ..., (MIN, S, P,
laty, , long;,, alt;,)} and send the location constraints to the location
matching engine

Delete subscription: delete a subscription from the system
Input: subscription S

— delete the subscription S from the filtering engine
— delete all location constraints that are associated with S

Match location update: match a location update against the location con-
straints in the system

Input: mobile identification number MIN and the corresponding location infor-
mation (latyrn,longymin,altyrin)

— retrieve all location constraints that contain MIN: {(MIN, S,, P, lat;,
long;, , alty,), (MIN, Sk,, P, P, long,, alty,), ..., (MIN, S,
P, lat,,, long,, alt;,)}

—fori:=1tordo

o if the distance between (latyrn, longmrn, altyrn) and (aty, , long,,
alt;,) is within a certain value, send P, to the mobile device identified by
MIN and delete the location constraint (MIN, Sk,, B, lat;,, long,,
alty,)

e else if P, is instantaneous, then delete the location constraint (MIN,
Sk:s P, laty,, long,, alty,)

3.4 Modeling Applications with L-ToPSS

In this subsection we present three examples of applications and show how they
can be modeled with our system: the targeted advertising application we referred
to earlier in the paper, an application for automatic airport check-in and a friend
finder application.

Targeted Advertising Application
This scenario demonstrates the deployment of an LBS application that informs

its users about objects of interests that are close to their current position. The
objects of interest are matched according to user profiles. Thus, users are noti-
fied about discounts or sale for items that correspond to their interests and are
available in their proximity. In this type of application, mobile clients act as sub-
scribers in our model, while content providers represent stationary publishers.
User profiles represent subscriptions, while information made available by the
content providers is inserted as publications in the system. Thus, when a mobile
user submit its profile to the system, the method insert subscription is called
with the appropriate parameters: the MIN of the client and the profile expressed
as a subscription (see Section 3.1, for details). Similarly, the information made
available by the content provider is inserted into the system using the method
insert publication or match publication depending on whether the publication is
instantaneous or a long-lived one. The location updates of the mobile client will
be sent to the system by the match location update method.

Automatic Airport Check-in

This application addresses the following scenario. A client buys a plane ticket.
When he arrives at the airport, the check-in system detects his presence at the
airport and performs automatic check-in for the client. This application can be
supported in our system using the mobile publisher-stationary subscriber ap-
proach. The mobile client acts as a publisher. When he buys the plane ticket,
the ID of the flight and the MIN of the user’s mobile device are inserted into
the system as a publication, using the insert publication method. The airport
check-in system acts as a subscriber: when the check-in procedure for a certain
flight has to start, it subscribes to the ID of that particular flight, using the
method insert subscription. This subscription will match all publications that
contain that particular flight ID. In this way, a set of location constraints are
created and sent to the location matching engine. When the client arrives at the
airport, the corresponding location update will match the location constraint of
that client; thus, the check-in system (i.e., the subscriber) is notified and it can
perform automatic check-in for the client.

Friend Finder Application

This service allows mobile users to specify a member of the family or a fried
about whom they would like to be notified when he is in the same area. This
application follows the mobile publisher-mobile subscriber scenario. Practically,
this scenario coordinates the positions of the two mobile users. Each mobile user
has associated a MIN of the mobile device. When one user subscribes to the
service for receiving notifications when his buddy is nearby, the corresponding
location constraint is created (i.e., (MINy, MIN,)). The location constraint
will be matched only when the two mobile users are in the same area and the
appropriate notification is sent to the subscriber.

These three applications presented above cover all mobility scenarios de-
scribed in Section 2. All other applications that follows a particular scenario can
be modeled in a similar way.

4 L-ToPSS - Experimental Platform

Our experimental platform is depicted in Figure 2. In order to experiment
with our system, we use two IBM tools designed to facilitate LBS testing: City
Simulator [11] and Location Transponder [14] . The City Simulator tool produces
trace-files that simulate the motion of up to 1 million people. The trace-files
contain timestamped data records representing coordinate positions of mobile
objects (e.g., cell phone users). The Location Transponder takes as input the
trace-files produced by the City Simulator and transmits the data to a receiving
LBS application/server using HTTP requests, SOAP calls, UDP datagrams or a
user-provided custom method. Thus, the Location Transponder will provide the
location information updates to our system.

Web Application

[City Simulator]

\ /

[Location Transpondeﬂ Workload
I o LU » Generator

(MIN, lat, long)

Notifications
Fig. 2. L-ToPSS Experimental Platform

To experiment with the applications presented above, we develop a web appli-
cation for client registration/profile input as well as for specifying publications.
In order to simulate the activity of a real-life system, we use a workload gener-
ator which sends subscriptions and publications randomly into the system. The
location matching engine and the repository used for storing publications are
implemented using fastDB [7]

Table 3. ToPSS matching engine: matching performance for one event and different
number of subscriptions.

subs matching time (ms) # subs matching time (ms)
1000 0.10 100000 8.10
5000 0.27 500000 79.00

10000 0.63 1000000 190.70
50000 3.85 5000000 1056.00

We believe that the main bottleneck in this architecture is the filtering engine.
Our filtering engine is based on the ToPSS high-throughput matching kernel. The

kernel implements a variety of counting algorithms [3]. We have evaluated its per-
formance on a dual-CPU Pentium II workstation with an i686 CPU at 900MHz
and 1.5GB RAM operating under Linux RedHat 7.2. Table 3 summarizes the
experimental results for matching an event against different number of subscrip-
tions. As the matching of location updates and the matching of subscriptions
represent queries against tables, they are not interesting from an experimental
point of view. Therefore, we do not include results about them.

5 Related Work

The work in this paper is part of the Toronto Publish/Subscribe System (ToPSS)
project of the Middleware Systems Research Group (MSRG). Other recent and
ongoing projects in the MSRG include Approximate ToPSS [13], Semantic ToPSS-
[15], and Subject Spaces [12].

A lot of research has been devoted to developing publish/subscribe sys-
tems [1,2,4,6]. Only recently, some research addresses location information in
publish/subscribe systems. Chen et al [5] present an architecture for filtering
spatial events (i.e., location updates). However, they do not support in their
model the correlation of user profiles, content provider data and location in-
formation. [9] presents a multidimensional model for representing the informa-
tion in LBS. Other topics of research related to our work are querying loca-
tion dependent data, spatial databases and moving objects [10, 17]. These topics
address issues related to data management, data indexing and representation.
Publish/subscribe systems solve a problem inverse to the database query pro-
cessing: subscriptions represent queries, while publications represent data items;
usually, publish/subscribe systems filter data items against queries. [10] contains
an approach similar to the publish/subscribe model: in contrast with traditional
approach of building indexes on moving objects, they introduce query indexing
(queries remain active for a long period of time, while moving objects change
their position continuously). In industry, content and location providers have
implemented different aspects of LBS, but they focus on pull-oriented services.

6 Conclusions

In this paper we present an extended model for a publish /subscribe system that
is location-aware. While the results presented in the paper are only preliminary,
we consider that the model introduced can effectively support location based
services in a push-oriented style. During the design of the model, we learned
that there are cases when the publications need to be persistent in the system.
Moreover, the location information can be processed independently from the
matching between publications and subscriptions. In this way, we avoid updating
subscriptions with each location change of the subscriber.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar Deepak Chandra. Matching events in a content-based subscription system.
In Symposium on Principles of Distributed Computing, pages 53—61, 1999.

. Mehmet Altinel and Michael J. Franklin. Efficient filtering of xm! documents for se-

lective dissemination of information. In Proceedings of the 26th VLDB Conference,
2000.

Ghazaleh Ashayer, Hubert Ka Yau Leung, and H.-Arno Jacobsen. Predicate match-
ing and subscription matching in publish/subscribe systems. In Workshop on Dis-
tributed Event-based Systems, Vienna, Austria, 2-5 July 2002.

Antonio Carzaniga, David S. Rosenblum, and Alexander L Wolf. Design and eval-
uation of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332-383, August 2001.

Xiaoyan Chen, Ying Chen, and Fangyan Rao. An efficient spatial publish/subscribe
system for intelligent location-based services. In Workshop on Distributed Event-
based Systems, San Diego, California, 8 June 2003.

Francoise Fabret, H.-Arno Jacobesen, Francois Llirbat, Joao Pereira, Kenneth
Ross, and Dennis Shasha. Filtering algorithms and implementation for very fast
publish/subscribe systems. In SIGMOD Conference, 2001.

Fastdb. ”http://www.ispras.ru/~knizhnik/fastdb.html”.

H.-Arno Jacobsen. Middleware services for selective and location-based information
dissemination in mobile wireless networks. In Workshop on Middleware for Mobile
Computing, Middleware 2001, Heidelberg, Germany, 12-16 November 2001.
Christian S. Jensen, Augustas Kligys, Torben Bach Pedersen, and Igor Timko.
Multidimensional data modeling for location-based services. In The tenth ACM
international symposium on Advances in geographic information systems, Virginia,
Germany, 2002.

Dmitri V. Kalashnikov, Sunil Prabhakar, Susanne Hambrusch, and Walid Aref.
Efficient evaluation of continuous range queries on moving objects. In DEXA
2002, Proc. of the 13th International Conference and Workshop on Database and
Ezpert Systems Applications, Aix en Provence, France, September 2-6 2002.
James Kaufman, Jussi Myllymaki, and Jared Jackson. City simula-
tor. November 2001. IBM alphaWorks emerging technologies toolkit,
http://www.alphaworks.ibm.com/tech/citysimulator.

Hubert Leung and H.-Arno Jacobsen. Subject spaces: A state-persistent model for
publish/subscribe systems. In Computer Science Research Group Technical Report
CRSG-459, University of Toronto, September 2002.

Haifeng Liu and H.-Arno Jacobsen. A-topss - a publish/subscribe system support-
ing approximate matching. In Very Large Databases (VLDB’02), University of
Toronto, August 2002.

Jussi Myllymaki and James Kaufman. Location transpon-
der. April 2002. IBM alphaWorks emerging technologies toolkit,
http://www.alphaworks.ibm.com/tech/transponder.

Milenko Petrovic, Ioana Burcea, and H.-Arno Jacobsen. S-topss - a semantic pub-
lish/subscribe system. In Very Large Databases (VLDB’03), Berlin, Germany,
September 2003.

Y.Zhao. Standardization of mobile phone positioning for 3g systems. IEEE Com-
municantions Magazine, July 2002.

Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao, and Dik Lun Lee. Location-
based spatial queries. In SIGMOD Conference, to appear, 2003.

