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Abstract

Middleware platforms such as CORBA, DCE, DCOM, and JavaRMI offer standard inter-
face definition languages, interaction protocols, data exchange formats, and communication
services to achieve interoperability and support system integration for software development
in heterogeneous and distributed computing environments. Integration is also achieved by
common interface definition languages (IDLs) that serve to specify module names, interface
names, and operation and type signatures in a uniform way. The simplicity of IDLs ensures
that these languages are applicable to a wide range of application domains, can be mapped
to a wide variety of implementation languages, and are simple to learn. However, for certain
security and safety critical or reactive applications there is an urgent need to express other
aspects of the software under development. Such aspects include synchronization constraints,
pre- and post conditions, invariants, QoS annotations, and real-time annotations.

To leverage this semantic mismatch of current interface definition languages and domain
specific extensions, we discuss solutions for adding specifications of semantic aspects to compo-
nent interfaces and automatically synthesizing code that instruments corresponding semantic
checks. Independently from the concrete syntax and semantics of such specification elements,
we present a collection of design patterns that allow the designer to seamlessly integrate the
synthesized code with the code frames generated by standard IDL compilers. We study these
approaches along the concrete example of extending CORBA IDL with synchronization con-
straints and evaluate several implementation alternatives, solely based on standardized fea-
tures of the CORBA standard. We demonstrate the effectiveness of our approach through
an IDL-annotation compiler that synthesizes support code portable across different CORBA
implementations.

Keywords

IDL, extended interface definition language, synchronization constraints, synchronization code
pattern.

1 Introduction

Several distributed computing platforms and component architectures have come to age over
the past few years. The more common ones include CORBA [OPR96], DCOM [Mic96], Jav-
aBeans [Eng97], and DCE [RKF92]. They all aim at insulating distributed applications from the
underlying proprietary infrastructure to achieve interoperability across disparate hardware plat-
forms, network protocols, and operating systems. A common interface definition language (IDL)
serves to package heterogeneous component implementations with uniform interface specifications.
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Thus server components are made accessible to clients written in virtually any programming lan-
guage. Many IDLs such as CORBA IDL, ODL, or ANS.1 typically specify component interfaces
in terms of module names, interface names, structured types, and signatures of operations. A
signature defines the operation name, return type, argument modes and types, and possibly an
exception type.

This simplicity and generality ensures that IDL is applicable to a wide range of application
domains and can be mapped to a large variety of implementation languages. But the price for
this generality is that:

o different semantic properties of application objects such as functionality, dynamic behavior,
timing requirements, synchronization constraints, or quality of service requirements cannot
be formally documented in the object interfaces,

e the separation of a distributed system’s requirements and constraints into a number of
concerns that can be addressed, analyzed, and evolved in isolation throughout the lifetime
of an application is not supported, and

e the automatic synthesis of code from specifications is limited to the generation of header files,
skeleton, and stub code providing some degree of communication and location transparency.

Compared with state-of-practice specification and design languages such as UML with its
structural, dynamic, and functional views on object specifications [BR98], IDLs are expressively
weak. The consequence are a growing number of proposals for IDL extensions, application-specific
IDL conventions, and supplements including:

e the component definition language (CDL) developed by the OMG to express the interaction
of business objects at the meta-level;

e the inclusion of real-time [SLM97b, WBTK96], quality of service [ZBS97], behavioral [Zad97],
and quality assurance [AJ96] annotations into IDL;

e annotations invisible to the IDL compiler that impose synchronization constraints on the
operations visible at object interfaces [Kra98].

A crucial aspect of all these proposals is the question of how they are implemented. Certainly,
the simplest way is to wait for the standard and its implementation by a CORBA vendor. But
such reference implementations may take time and applications exploiting such IDL extensions
are not portable as long as they depend on individual vendor platforms. It is rather unlikely that
language constructs for specifying real-time requirements, synchronization constraints, functional
or dynamic behavior will ever be included in future versions of IDL. The TAO approach to associate
real-time semantics with predefined IDL types lacks portability as object implementations rely on
the existence of real-time object adapters and suitable precautions in the object request broker
(ORB) [HOLS98]. In general, such modifications to proprietary CORBA platforms are not feasible
as the standard lacks sufficiently detailed middleware API specifications and leaves a wide range
of design decisions to CORBA vendors [Jac97b].

To escape this trap, the approach described in [Kra98] proposes to include semantics annota-
tions as comments in IDL interface definitions and separately compile these annotations into code
implementing corresponding sanity checks.

In this paper we further explore this idea by searching for design alternatives that exploit
different features of the CORBA standard to seamlessly integrate synthesized synchronization
code with manual implementations of the object’s functionality. These solutions are developed
into a suite of design patterns for implementing IDL extensions that co-exist with standard IDL
compilers. Prototype implementations of the proposed design patterns, which are ongoing, serve



to empirically investigate their pros and cons. The general idea relates to the motivation behind
aspect-oriented programming [LTdMK98], namely to allow a distributed application to be con-
structed by describing each concern separately. The main difference is that we aim at a program
specification rather than design level and use the specification to generate code implementing
non-functional properties of programs.

Our approach is based on the current CORBA specification for which several proprietary and
public domain implementations exist. In Section 2 we briefly review the CORBA standard and
its interface definition language to the extent necessary for understanding the design solutions.
Section 3 provides a survey of IDL extensions under investigation together with a discussion of
their benefits and drawbacks. Section 4 then focuses on one distributed software aspect that is
orthogonal to an object’s functionality and serves as a pattern for extended interface specifications,
namely synchronization constraints. We introduce a semantic model of non-sequential behavior on
which we build IDL annotations. A simple example illustrates the approach. Section 5 develops
a collection of design patterns to synthesize portable code that instruments such constraints in
terms of before- and after-tests. Section 6 reports on our experiences in practical implementations
of these design patterns and argues about their potential to carry over to other non-functional
software aspects.

2 CORBA: Distributed Object Computing Middleware

In an open distributed computing world we are confronted with a constantly changing infras-
tructure. It typically consists of a diversity of proprietary hardware and software components,
protocols, operating systems, programming languages, and development tools. For distributed
applications operating in such a heterogeneous computing environment, service and information
discovery, and client/server interoperability are key issues [Vin97].

2.1 The Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) is a standard for distributed com-
puting, which has been developed by the Object Management Group (OMG, [OMG91]). CORBA
aims at providing a uniform communication infrastructure for building distributed applications.
It provides mechanisms, protocols, and services that allow application developers to integrate soft-
ware components operating on different hardware platforms and operating systems into a coherent
logical entity. CORBA has also been designed to support programming language interoperability.
This is to allow for full flexibility in application design and development, as well as, to facilitate
the integration of legacy code into distributed applications.

Interoperability is achieved by packaging all component implementations with uniform in-
terface specifications using CORBA’s interface definition language (IDL). IDL is a descriptive,
non-algorithmic ’lingua—franca’ with a C++-like syntax that adds features for expressing dis-
tributed processing [Sie96]. Interface specifications are compiled into stub code written in the
component’s implementation language. The stub code is linked with hand-written code imple-
menting the actual application semantics and with CORBA library components implementing in-
frastructure services. The stub code handles communication with remote machines via the Object
Request Broker (ORB). This includes argument packaging, data marshaling, and un-marshaling.
To realize interaction and communication between distributed components, a broker mechanism is
deployed. It finds remote components, possibly activates them, invokes the requested operation,
and returns eventual results to the invoking client object. All this is fully transparent to the
interacting components.



2.2 CORBA IDL

CORBA IDL is a simple descriptive interface definition language designed to be easily represented
by a large range of programming languages. An IDL language mapping describes the represen-
tation of IDL statements and expressions in the target programming language. Mappings for C,
C++, Smalltalk, Java, Ada, and COBOL have been standardized so far. IDL allows one to define
component interfaces by listing their operation signatures, types, and attributes. Each signature
contains an operation name, a return type, a list of typed formal parameters including a mode
indicating for each parameter whether the actual value is passed from client to server, from server
to client or both (in, out, inout, respectively). The signature may also include exceptions to be
raised by the declared operation. Figure 1 shows the general structure of an IDL file.

module <identifier>
{ // module-scope
<type declarations>;
<constant declarations>;
<exception declarations>;

interface <identifier> [:<inheritance>]
{
<type declarations>;
<constant declarations>;
<attribute declarations>;
<exception declarations>;

[<op_type>] <identifier> (<parameters>)
[raises exception ][context];

[<op_type>] <identifier> (<parameters>)
[raises exception ][context];
}// end interface <identifier>

interface <identifier> [:<inheritance>] {...}
}// end module <identifier>

Figure 1: Schema of a CORBA IDL specification.

The concrete IDL specification of a simple bounded buffer object providing two operations put
and get that allow independent client objects to deposit and remove items in and from a buffer,
is depicted in Fig. 2. The read—only attribute bufsize models the maximal capacity of the buffer.
This example will serve us throughout the rest of the paper as a running example.

interface BoundedBuffer {
// size of the buffer
readonly attribute short bufsize;

// method for extracting an element
short get();

// method for inserting an element
void put(in short value); }

Figure 2: IDL definition of a bounded buffer interface.
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2.3 Generic IDL Compilation Framework

The CORBA standard precisely defines the language mappings supported and the interfaces
of client—side stubs and server—side skeletons into which IDL specifications are compiled. The
interfaces between stub and ORB, skeleton and object adapter, object adapter and ORB, however,
are proprietary and therefore generally not open to manipulation by middleware users (cf. Fig. 3).

client server

[ — [ —

[ stub j

object request broker ‘

—— - openinterface
- - proprietary interface (not available)

Figure 3: Open and proprietary interfaces to the ORB.

To describe the integration of object implementations and formalize design solutions imple-
menting the proposed IDL extensions, we use a design—pattern-like notation. This allows us to
capture universal concepts apt for different implementations [GHJV95]. Supporting code samples
are presented in a C++-like syntax.

In Fig. 4 we use the OMT notation to illustrate how an object implementation is integrated into
the distributed computing platform. This figure depicts the inheritance relationship that holds
among the ORB, the CORBA objects, and the developer’s object implementation (the service
implementation).

3 Extending interface definition languages

In this section we present a comprehensive survey of interface definition language extensions and
discuss proposals for processing the extensions in standard environments.

IDLs have been designed to provide interfaces to objects and components in an implementation
language independent manner, with the objective of keeping the interface independent of the
object implementation. Particularly, the OMG IDL has been designed to be expressible by a wide
range of different language paradigms. This generality warrants many design tradeoffs. Operation
overloading in derived interfaces, for instance, has been dismissed, since it cannot be supported
by all target implementation languages in a developer intuitive manner. Note, the realization
of IDL language features (e.g., inheritance, exceptions, overloading) must be represented in the
?programming language mapping” applied by the application developer.

IDLs have therefore been kept purely syntactical expressing operation signatures, defining
namespaces, and interfaces only. Most common IDLs lack any semantic capabilities to express
behavioral annotations, quality of service attributes, interaction protocols, synchronization con-
straints, support for special application domains, object grouping facilities, and miscellaneous
extensions. This deficiency has lead to many language extensions. We now provide an exhaustive
classification.
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Figure 4: Integrating an object implementation with code generated by IDL compilers. (1)
Inheritance-based: Object implementation inherits from server skeleton; (2) TIE-based: Object
implementation and server skeleton are tied together via method delegation

Expressing behavior and semantic

Much work has focused on annotating IDL with behavioral extensions, such as pre- and post-
conditions, invariants, abstract operation semantics, data integrity conditions, and Horn clauses.

The Assertion Definition Language [SH94, X/096] a specification language developed at Sun
Microsystems provides post-condition checking, semantic assertions on interface attributes and
operations. This work has been extended with the Borneo [San96, bor] project adding formal
specification constructs to OMG IDL, expressing input-output behavior of objects, and describing
relationships between events occurring in the distributed environment. Other approaches along
these lines include [DW98, LC93, Pud98].

Several programming languages approaches to annotating interfaces with assertions to improve
program correctness and interface expressiveness have been precursors of this work, most notably
Eiffel [Mey97], Sather [D. 96], and JAWA [FM98], among many others.. An object oriented
programming language that introduces behavioral subtyping is defined in [Ame91].

Altogether different proposals to combine behavioral annotations and IDL are presented in [BHW,
AJ96]. Born et al. propose to map IDL into a formal description technique, in their case SDL-
92 [ITU93], in order to combine the specification of signatures with the more expressive features
of formal description languages. Further processing is carried out via tools supporting SDL—92.
Anlauf and Jahnichen [AJ96], on the contrary, propose to specify interfaces in Object-Z to cap-
ture behavioral aspects. They map Object-Z interface specifications to IDL and support code. In
both proposals it is not shown how the integration with state-of-the-art distributed computing
environments may be carried out.

Expressing quality of service requirements

The annotation of interfaces with real time constraints (e.g., priorities, deadlines, execution time)
and quality of service attributes (e.g., required min/max bandwidth, allowed jitter, resource needs)
have been widely proposed including motivating implementation alternatives.

Schmidt et al. [SLM97a] propose to extend OMG IDL to express QoS annotations in their
TAO real time ORB through added syntax. The problem with such an approach is the non-inter-



ORB portability of the application. A similar solution is presented by Becker and Geihs [uKG99]
who annotate IDL with QoS characteristics. Similarly TINA ODL [Par98] provides many built-in
features to address QoS processing needs.

Wolfe et al. [ WBTK96] add timing constraints via IDL context fields and interface attributes.
They rely on programming conventions to implement the timing annotations but do not need
to extend IDL itself. However, they still requires to extend the IDL compiler to insert time
management functions in stubs and skeletons.

A very exhaustive description language encompassing the specification of QoS requirements
and resource needs, service usage patterns, physical resources used, and internal object state and
structural information is presented by Zinky et al. [ZBS97].

Object interaction protocols

Object interaction protocols are IDL annotations that describe sequences of legal operation invo-
cations between interfaces or for one interface. They provide hints to clients on "how” to use an
interface and give rise to static and dynamic checking of a caller-callee interaction.

The annotation of IDL with path-expressions to express order of invocation requirements is
presented in [Wat98]. Alternatives are the management of server execution with Petri-nets [GG97],
the features of TINA ODL [Par98, BHW] to express order of execution, IPDL (Interaction Protocol
Definition Language) [Buk96], and regular types for active objects [Nie95].

Synchronization constraints

Synchronization constraints are treated extensively throughout this work. Related work ap-
proaches include Frolund [Fro96] who has proposed a framework to extend active object based
languages with synchronization primitives (mutual exclusion, capacity constraints, etc.). Quiros
et al. [vdlHQuOM97] have demonstrated how to prevent inheritance anomalies in multi-threaded
CORBA environments that arise from mutual exclusion primitives added directly by the devel-
oper to the object implementation. In previous work, we have proposed extending OMG IDL with
synchronization constraints [JK98], which we refine in this paper.

Expressing needs of special application domains

IDL extensions for supporting diverse application domains have been addressed by the OMG,
for instance, CDL (Component Definition Language) [OMG98a] to capture needs of the busi-
ness domain. Moreover, TINA ODL [Par98] has been designed with an eye on telecommunica-
tion application needs. Other examples include workflow modeling, database schema and access
specification, document management, and object constraint languages. These languages mostly
constitute entire definition languages themselves.

Miscellaneous proposals

A last category of interface extensions that are hard to fit in the above classification scheme
include IDL extensions to express object co-location constraints [HBSG98], coordination con-
straints [HBSGY98], data parallelism [KG97], security annotations [HMdPS96], and component
definition language extensions [MK98, OMG98b].

4 Annotating Object Interfaces with Synchronization Constraints

The services and facilities coming with a CORBA implementation support re-use and thus help
reduce development costs. But the degree of automation of the software development process



is limited to the generation of skeleton and stub code for the language mappings supported. In
this section we illustrate the enhancement of object interface descriptions with annotations of
synchronization constraints.

An extensive discussion of the need for synchronization constraints revived with the advent
of concurrent object-oriented languages in the early 80s (cf., e.g., [BY87]). A follow-on debate
on inheritance anomalies [MY91] reflected a serious difficulty of language designers and users in
combining inheritance and concurrency without requiring substantial redefinitions of inherited
synchronization code. Such anomalies are alleviated in our approach as we exploit inheritance
only at the specification level but do not inherit synchronization code at the implementation level.

In the following subsection we sketch a simple semantic model of non-sequential behavior that
is just rich enough to formalize synchronization constraints and make them a declarative part
of interface definitions. To be compliant with the CORBA standard, such constraints will occur
as comments to the IDL specification. This will be illustrated with annotations added to the
interface of a bounded buffer.

It should be noted that this example serves to illustrate the inner workings of a generic frame-
work that allows the application developer to seamlessly include her favorite specification dialect
and corresponding checking code into a standard CORBA based development environment. Qur
objective was not to propose yet another specification technique.

4.1 A Semantic Model of Concurrent Processes

To understand the dynamic behavior of distributed applications, we use partially ordered sets of
events, which we call processes. The events of interest are derived from the operations declared
in IDL object interfaces. The executions of an operation m provided by a server object are
represented by instances of two distinct event types: mg and m;. Event mg denotes the start of
a specific execution, while m; denotes the termination of an execution of m.

Synchronization constraints impose a partial ordering — on a countable subset E of the uni-
verse of events that can be derived from an object interface. For a finite set M of event types
associated with an object interface, we use the labeling function a to map events in E into a
given set A of event types. For two events e1, e the relation e; — es represents a causal ordering
between e; and e; and also defines their precedence in time in the sense that e; occurs before es.
Two different events d and e for which neither d — e nor e — d holds may occur concurrently.
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Figure 5: Graphical representation of a finite process

A finite process p = (E,, —p, ;) can be visualized through a directed acyclic graph whose
nodes correspond to individual events and whose edges denote the causal relationship between
events. For a given set {p,g} of operations Fig. 5 shows a finite process in its graphical form
for the bounded buffer interface of Fig. 2 with ps, gs denoting the start event types and p¢, g:
the termination event types derived from operations put and get, respectively. Such a process
represents a specific protocol imposed on the operations at an object interface. The concrete



protocol depicted in Fig. 5 states that each get operation is preceded by at least one put operation,
that all put (get) operations occur in sequence, and that the number of put operations must not
exceed a certain limit as opposed to the number of get operations that occurred so far (this limit
is 3 in our example).

Although such process graphs provide an intelligible model of the dynamic behavior of dis-
tributed systems, we cannot deduce general statements from a single observation as shown in
Fig. 5. What we are after is a declarative approach to specify synchronization requirements as
constraints imposed on the structure of processes. To achieve this goal, we rely on the definitions
in [Bro94] and exploit the fact that each process is uniquely determined by the set of its finite
prefixes. This allows us to characterize a process in terms of predicates stating properties that
must hold for all the process’ finite prefixes.

Following [Bro94] we use function ”#” to map an event type a and a process p into the number
of executions of a:

#(a,p) = |{e € Eplay(e) = a}|
This function, which can take the value infinite, provides the basis to define standard synchro-
nization constraints such as

e mutual exclusion: an operation cannot be executed as it would interfere with another
operation being processed,

e self-exclusion: an operation that can be executed by at most one thread at a time [Lop97],
and

e precedence: operations must occur in a certain sequence, e.g., the microwave beam must
be turned off before the door can be opened.

With the # function we can, for example, determine whether one or more execution instances of
some operation m are currently active in a particular process p as follows:

active(m,p) 1= Vq | q prefix p A ¢ finite e #(ms, q) > #(my, q).

Inactivity is equivalent to #(ms,q) = #(m¢,q) because m; cannot be larger than m, due to the
standard operation execution semantics. The mutual exclusion of two operations m and n in an
object interface can then be defined by:

mutex(m,n,p) := (active(m,p) = —active(n,p)) A (active(n,p) = —active(m,p))

Function # can also be used to define predicates specifying safety properties, i.e., invariant con-
straints that must hold for all executions, and fairness requirements. Two examples of the former
are capacity and in-bounds access constraints.

A nice feature of the #-function is that it can be easily implemented in terms of counter
variables associated with interface operations and that the predicates defined over it boil down to
arithmetic operations on these counter variables.

If we wanted to specify timing constraints as another aspect of object interfaces, we would
have to add a function ¢ mapping event types and processes into a domain Time or into the set of
natural numbers such that (e, p) would give us a discrete point in time at which e occurred in p.
But this consideration goes beyond the scope of this paper and is therefore not further discussed.

4.2 Synchronization Constraints of a Bounded Buffer

A bounded buffer acting in a distributed environment gives rise to several kinds of synchronization
constraints (for the sake of simplicity, the formal parameter p referring to the process under
consideration is omitted):



e mutezr(get, get') with get # get/,
i.e., different invocations of the get operation must not be executed concurrently;

e mutez(put, put');

e capacity limitation:
put, < (get, + bufsize)

i.e., no bufsize more put than get invocations are allowed in any computation to avoid
buffer overflow;

e precedence constraint:
gets S putt

i.e., there must never be more executions of the get than there are executions of the put
operation to prevent underflow.

In addition we might want to add a strong fairness condition requiring that any client ¢; must
not execute the get operation k times more often than any other client c;, provided c; has
tried to invoke the get operation, at all; a similar fairness requirement exists for the clients of
the put operation. Priorities among competing invocations of interface operations also express
synchronization needs by requiring the selection of execution candidates among a collection of
currently invoked operations.

interface BoundedBuffer {
readonly attribute short bufsize;
/] the buffer takes at most 'bufsize' elements
//——sc: dist(put,get,bufsize)

short get();
// get invocations must be processed in sequence
//——sc: mutex(get,get') for get =/= get'

void put(in short value);
/] put invocations must be processed in sequence
//——sc: mutex(put,put') for put =/= put' }

Figure 6: IDL specification with synchronization annotations

In the implementation scheme to be developed in the following section, we want to associate
synchronization code derived from constraint specifications with individual operation implemen-
tations. Therefore, we must decide what the semantics of constraints is with respect to operation
execution. We adopt Frolund’s approach and interpret synchronization specifications as negated
guards [lun92]. For example, the intuitive meaning of the mutex(m,n) constraint is that an oper-
ation invocation m is not executed if another invocation n is currently executed, and vice versa.
Conceptually, such conditions can be verified by reference to a record of the server object’s history
of execution events. This idea will be exploited in the following section.

Fig. 6 presents the IDL of the bounded buffer example annotated with synchronization anno-
tations.

5 Design Patterns for Implementing Synchronization Code

In this section we present a design pattern with an embedded collection of alternative solutions
implementing synchronization constraints. The synchronization code we automatically integrate
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with the object implementation under development is synthesized from annotations. The strength
of our approach is its reliance on standardized CORBA features only. We strictly avoided exploit-
ing proprietary extensions.

5.1 Synchronization Constraints Pattern

Context: In a distributed computing environment no assumptions can be made about a specific
order in which the operations of a component interface are invoked because different clients of a
shared component act concurrently. But unsynchronized accesses to shared components are likely
to cause inconsistencies in the components’ states. They include an over- or under-flow of limited
resources, overwriting of information due to concurrent write updates to the same partition of a
repository, unfair uses of a shared resource, or illegal execution orders. To maintain the consistency
of state, the developer often has to take precautions that synchronize concurrent invocations at
component interfaces.

Synchronization can be achieved in many ways. Locking is a traditional mechanism to maintain
the consistency of a resource in the presence of concurrent accesses. The concurrency control
service of CORBA provides a locking mechanism to mutually exclude accesses of concurrently
executing transactions or non-transactional threads of control. A drawback of such services is that
they provide programming solutions only. The locking requirements are not documented at the
component interface. This lack of contractual information prevents decent analyses of the proper
interworking of concurrent components to detect potential deadlocks, blockings, and other forms
of unfair uses prior to constructing and testing executable code. Further the observance of such
properties by the actual implementation cannot be rigorously verified. Moreover, mutual exclusion
is only one way to synchronize the execution of a set of concurrent operation invocations. There
may be other causal dependencies among the operations of a component interface that require the
developer to:

e impose a precedence on certain operation executions,

e defer executions to prevent violations of capacity constraint such as over- and under-flow of
limited resources, or

e guarantee the fair use of a shared component by multiple clients.

Problem: CORBA IDL offers no means to specify synchronization constraints. At best,
synchronization constraints are hidden in object implementations. This complicates design, val-
idation, maintenance, and evolution of distributed applications. Further, developers cannot be
sure whether a new object implementation conforms to the behavior of the one it is going to
replace [Sch98].

Solution: First augment server interfaces by synchronization constraints suggested by the ap-
plication semantics presented in Section 4.1. To enable checks of synchronization constraints in the
server implementation define two variables #start_m and #terminate_m (denoted by #end_m,
for the sake of brevity) for each operation m involved in a synchronization constraint. Prior to
activating the code implementing the functionality of operation m, verify one or more of the syn-
chronization conditions depicted in Table 5.1 — depending on the constraint expression in which m
occurs — and prevent the execution of m, while either of the corresponding conditions hold. Con-
dition “alt”, which is derived from “dist”, specifies the alternating execution of two operations.
This predicate can easily be generalized to the repeated sequence of more than two operations.
Such sequence constraints are, for example, useful to handle safety constraints.

Similarly, other types of constraints can be checked. If the actual condition holds, the execution
of m is disabled. If m is involved in more than one synchronization constraint, m is disabled if
either of these constraints is true. Otherwise variable #start_m is incremented by one, the code
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Sync. constraint | Sync. condition Interpretation

mutex(m,n) #start-m — #endn # 0 | n is active
dist(m,n k) #start.m = #end_n + k | capacity k is exhausted
dist(n,m.k) #startm = #end_n m cannot be started more often than

n has terminated
alt(m,n) dist(m,n,1) produces an alternating sequence of
m and n beginning with m

Table 1: Synchronization constraints

implementing m’s functional behavior is executed and finally variable #end_m is incremented.
This is illustrated in Figure 7 for some operation m with result type <type> defined in interface
<server> with two synchronization constraints. Figure ?? shows the code patterns implementing
the synchronization checks for single threaded and multi threaded servers respectively.
Benefits.

e Concurrent accesses to shared objects are properly synchronized.

e A wide range of causal dependencies can be specified and verified, solely by reference to
variables maintaining operation state.

e The formal semantics underlying the synchronization constraints enables rigorous analysis
at the specification level based on the formal model underlying the constraint expressions.

e The code for synchronization checking can be synthesized automatically from the specifica-

tion.

5.2 Development Steps and Pre-processing

In the following subsections we study several approaches towards an automatic implementation
of synchronization constraints and their seamless integration with the code frames generated by
standard IDL compilers and the developer’s operation implementation. The solutions we present
aim at portability. Fig. 8 provides an abstract view on the development steps including the
different code fragments and compilation stages incurred.

The individual steps are:

1. Write IDL specification of server object,

2. annotate the signature specification with synchronization constraints,

3. pre-process the annotated IDL specification,

4. generate stubs and skeletons from the IDL specification with standard IDL compiler,

5. generate support code from the annotated IDL specification (this code implements the pat-
terns described below for the management of the synchronization constraints according to
the specification),

6. compile all resulting files, and

7. link the code with broker libraries, application code, and synchronization management li-
braries.

12



IDL - Spec.
interface <server>{

I1--sc:dist(m,n k)

<type> m(...)

// Multi threaded server
<type> <server>_sync::m(...) {

// Single threaded server
<type> <server>_sync::m(...) {

// begin critical section - acquire lock // compute and check SC conditions

mutex( lock )

// compute and check SC conditions
while ( /* cond-1 or ... or
cond-n are not satisfied */ )
cond_wait ( <CV>, lock );

start_m++;
try {
<type> res = delegate->m(...); }
catch ( /* most specific handler */ ){
// SC book keeping
throw ( /* propagate exception */ )

}

catch ( /* least specific handler */ ){
// SC book keeping
throw ( /* propagate exception */ )

}

end_m++;

// wake up waiting threads
cond_broad( <CV> );

// end critical section: let go of lock
mutex_unlock( lock );
return res;

if ( /* cond-1 not satisfied */ )
throw SC_VIOLATED

if ( /* cond-n not satisfied */ )
throw SC_VIOLATED

start_m++;
try {
<type> res = delegate->m(...); }
catch ( /* most specific handler */ ){
// SC book keeping
throw ( /* propagate exception */ )

}

catch ( /* least specific handler */ ){
// SC book keeping
throw ( /* propagate exception */ )

}

end_m++;

return res;

Figure 7: Multi threaded and singled threaded language patterns for synchronization condition
checking code. (We assume a Solaris like threading model for the management of threads, i.e., for
mutex and condition variables).
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.
linking client executable

() generatedcode | | libraries

Figure 8: Development steps

For the pre-processing stage several alternative approaches are possible which manifest themselves
in the manner the synchronization constraints are expressed.

The constraints may be expressed as comments in the IDL specification file itself. This has
the advantage that the file still parses through the standard IDL compiler. Maintaining the same
advantage but incurring greater management efforts, the synchronization annotations may be kept
in a separate file. Expressing the annotations together with IDL in a new language IDL+ leads
to a more coherent specification language for the cost of a new IDL+ compiler.

We decided to express the annotations as IDL comments. Processing of the constraints is thus
performed by a separate compiler that interprets the provided comments.

5.2.1 Inheritance-Based Solution

This solution uses class inheritance for integrating an object implementation in a CORBA plat-
form. Instead of deriving the class instantiating the object implementation directly from the
generated skeleton class, an adapter class is generated in the pre-processing stage by the annota-
tion compiler. This class derives from the skeleton class generated by the IDL compiler and from
another synchronization class which implements the synchronization constraints. This inheritance
relationship is depicted in Fig. 9. The actual object implementation is ’plugged into’ the platform
by the newly generated adapter class which delegates invocations on its behalf.

A client method invocation to the get () operation, for instance, is dispatched to its receiver, a
server-proxy implementing the synchronization that delegates the invocation to the actual object
implementation. If the constraint is not satisfied, the proxy defers the invocation. Excerpts of
this code are shown in Section 6.

5.2.2 Delegation-Based Solution

This solution builds on the TIE-approach for integrating an object implementation in a CORBA
platform (see Fig. 4). It ’ties’ the platform and the object implementation together. This is
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CORBA_Object

Buffer
Buffer_skeleton Synchronization
long get () mutex_lock(...)
put (long) mutex_unlock(...)
short buffersize

A %

Buffer_skeleton_sync Buffer_impl
long get
g get () long get ()
put (long) °
put (long)
Buffer_impl delegate short buffersize

Figure 9: Modified inheritance structure to accommodate the class implementing the synchro-
nization constraints for the inheritance-based design.

achieved by generating a class that delegates client method invocations to operations of the object
implementation (cf. Fig. 10). This approach is particularly useful for integrating components
written in programming languages not supporting inheritance.

For synchronization constraint management we generate an adapter class analogously to the
above solution. This time, however, it only inherits from the class providing the synchronization
code. The adapter class delegates method invocations to the appropriate operations of the object
implementation after performing synchronization management checks. In the manner explained
above the adapter class is 'tied’ together with the generated skeleton code. Thus, a client method
invocation dispatched through the server skeletons arrives at its receiver, the appropriate adapter
class, through delegation. In the adapter a synchronization check is performed and the call is
again delegated to the object implementation of the invoked operation.

COF_QBA_Object Synchronization

Buff:er mutex_lock(...)

: mutex_unlock(...)

I x
TIE(Buffer_skeleton_sync) Buffer_skeleton_sync Buffer_impl
long get () long get () long get ()
put (long) put (long) put (long)

Buffer_impl delegate short buffersize

Figure 10: Modified Inheritance structure to accommodate the class implementing the synchro-
nization constraints for the TIE-based design.
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5.2.3 Dynamic Invocation and Dynamic Skeleton Interface based Solution

The DII and DSI are interfaces that grant direct run-time access to the object request broker’s
communication layer — i.e., requests and invocations may be generated dynamically — without
prior compile time knowledge of method signatures and formal parameter types. The dynamic
nature of these interfaces is not of much help for solving our problem, however. rather the direct
access to the communication layer offers the key benefit as opposed to the above solutions that
were based on CORBA'’s static invocation (SII) and static skeleton interface (SSI). This direct
access can be exploited to interweave synchronization constraint management calls with object
implementation up-calls. Since all necessary information is available statically, the entire dynamic
stub (i.e., the steps that have to be taken to set up a dynamic call) can be generated automatically.

The main disadvantage of this approach is the inefficient nature of the DII and DSI. This has
been extensively discussed in the literature, for example, in [GS98, OH97].

5.2.4 Specialized Object Adapter

When the CORBA standard was first introduced, it was envisioned that many specifications of
specialized object adapters would follow (e.g., adapters for different kinds of databases). So far,
only one additional adapter has been standardized, and it only serves to solve portability problems
inherent to the initial adapter.

However, especially for the kind of extension we are proposing, a synchronization constraint
based object adapter is a possible alternative. As we have outlined above, crucial interfaces on the
server side of the distributed computing platform are not open. It is therefore difficult to implement
a proper object adapter without knowing intimate details of a given ORB implementation. Clearly,
this would not be a portable solution.

5.2.5 Proper IDL-compiler

The design of a proper IDL compiler for managing the extended specification language is certainly
the most straight forward solution to the problem. Based on previous experience (cf. [Jac97b]), we
have to report that this is unfortunately not a universal solution because crucial ORB interfaces
are not open. One may therefore only resort to this approach when the ORB interaction is based
on the DII/DSI or when the source code of the implementation is at hand.

5.2.6 Proprietary Solution: Orbix Filters

Some CORBA products provide proprietary extensions to the CORBA standard. Iona’s Orbix, for
instance, provides a feature referred to as filters. A filter is a hook that allows the user to execute
a function just before and just after an invocation is executed. Clearly, this feature is well-suited
for managing synchronization constraints. From the examples above, it should be obvious how to
adapt this feature to our case.

Interceptors, a novel feature that is derived from filters but is more general in nature, has
recently been added to the CORBA standard. Unfortunately it has not yet been implemented in
any ORB, as yet. Moreover, the current interceptor specification is incomplete. A revision task
force within OMG is revising it. For the motivated case of extending IDL with synchronization
constraints interceptors would solve some of the problems addressed. For other extensions, where
more elaborate processing is required, a solutions based on the patterns discussed above would
have to be taken.
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6 Implementation

We have prototyped several of the above presented solutions for various ORB implementations
(Mico, Orbix, and OrbAcus) to verify the portability claim of our solutions. We are also com-
pleting an annotation compiler for OMG IDL that synthesizes the adaptor classes from interface
specification annotations for different CORBA products.

In this section we demonstrate how the code templates generated from the annotation compiler
integrate with the skeletons generated by standard IDL compilers. The process is completely
transparent to the application developer who simply annotates her IDL interface according to
the application semantic. We then show how the developed design patterns generalize to the
implementation of other IDL-extensions. We briefly point out limitations that arise due to the lack
of the specification of crucial interfaces in the CORBA standard. Finally we give a comparative
evaluation of the presented implementation alternatives.

6.1 Code templates

Besides discussing the generated code templates, we want to extend the example by two aspects
commonly found in practice. These are exception handling and inheritance, as well as, their
interaction with the defined synchronization constraints. We have slightly adapted the buffer
interface from Figure 6 and introduced a user defined exception ILLEGAL ELEM (cf. Figure 11).
One interpretation of this could be that the buffer cannot hold all kind of elements from a particular
type, such that the placement of an ”illegal element” causes an exception to be raised by the buffer
object. This, of course, is purely constructed to demonstrate the use of exceptions in synchronized
objects. We have also derived the interface in Figure 11 from the base Buffer type to demonstrate
issues arising due to inheritance.

// Buffer2.idl
interface Buffer2 : Buffer {

exception ILLEGAL_ELEM{};

//--sc:dist(put, 2 * get2, size) -- overflow ’buffer full’
//--sc:dist(get2, 2 * put, 0) -- underflow ’buffer empty’

long get2(out long element2) raises (ILLEGAL_ELEM);

Figure 11: Fragment of derived Buffer2 IDL interface annotated with a user defined exception.

Figure 12 shows the template of the generated code implementing synchronization constraints
according to the inheritance-based approach discussed in Section 5.2.1. The example assumes a
single threaded ORB. Synchronization condition violations are signaled through exceptions thrown
by the synchronization adapter class.

For the sake of simplicity of the example we define one single generic exception signaling the
erroneous condition (SC_VIOLATED). This exception is automatically generated. As a matter of
fact, for each synchronization constraint a separate exception will be generated by the annotation
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processor, including call progress information and debugging information, which is not shown
in the examples. Each ”synchronization exception” is associated with the class its constraint is
implemented in (i.e., it is a nested class).

In the CORBA exception model user defined exceptions derive from CORBA: :UserException.
All system exceptions derive from CORBA::SystemEception. Catch-clauses are processed se-
quentially with the first matching clause handling the exception. Specific exceptions, such as
ILLEGAL ELEM (cf. 12), have to be handled first to ensure proper treatment.

Note, the necessary book-keeping operations in the exception handler. They ensure that after
an erroneous condition was detected the synchronization state prior to executing the delegated call
is re-instantiated before the exception is propagated back to the calling site, (i.e., back through
the ORB to the client side.)

// buffer2_sync.cc -single threaded

#include "buffer2.h" // stub compiler generated
#include "buffer2_impl.cc" // object implementation
#include "xidl.h" // ORB specifics, macros ...

// ORBskeleton(Buffer2) -> e.g., ’virtual public Buffer2_skel’ for OrbAcus
class Buffer2_sync_impl : ORBskeleton(Buffer2),
virtual public Buffer_sync_impl,
SYNCHRONIZATION {
private:
Buffer_impl *delegate2;

public:
//Constructor and destructor

class SC_VIOLATED : public CORBA::UserException { ... };

CORBA: :long
put2( CORBA::Long elem ) throw ( Buffer2_sync_impl::SC_VIOLATED,
ORBobject_impl(Buffer2)::ILLEGAL_ELEM ){
//--sc: dist(put, 2 * get, size) -- overflow
int tmpl = ( (start_put - (2 * end_get) ) == this.size() );
// sc:-guard, if violated throw an exception
if ( tmpl ) throw SC_VIOLATED;

// other comstraint checking goes here

start_put++;
// special handling for certain in, out, and inout arg.
try{
delegate2->put2(elem); }
// exception handler:
catch (ORBobject_impl(Buffer2)::ILLEGAL_ELEM &ie) {
start_put--; // SC book keeping
throw (ie); }
catch (CORBA::SystemException &se){
start_put--; // SC book keeping
throw (se); 7}
// delegated call returned successfully
end_put++;

};

};

Figure 12: Generate synchronization adapter for Buffer2 interface. = Note the macros
ORBbject_impl(...) and ORBskeleton(...) to parametrize code for different CORBA im-
plementations.
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Figure 13 shows fragments of the Buffer?2 class generated by the IDL compiler and fragments of
the Buffer-object implementation, which "wrap” the in Figure 12 shown synchronization adapter

class.

//buffer.h - IDL-compiler generated class

class Buffer :

{

virtual public CORBA_Object

virtual void put(CORBA_Long element)

};

//buffer_impl.cc - Buffer Object Implementation

class Buffer_impl {

public:
// constructor - destructor
Buffer_impl() { ...};

void put( CORBA::Long elem ) {...};

CORBA::Long get() {...};
//buffer2.h - IDL-compiler generated class R
};
class Buffer2 : virtual public Buffer,
virtual public CORBA_Object // buffer_skel.h - IDL compiler generated class
{ class Buffer_skel : virtual public Buffer,
- virtual public CORBA_Object_skel
virtual void put(CORBA_Long element) {...};

// buffer2_skel.h - IDL compiler generated class
class Buffer2_skel : virtual public Buffer2,
virtual public CORBA_Object_skel
}; {...};

Figure 13: IDL-compiler generated Buffer and Buffer2 class and developer provided Buffer
object implementation class (The Buffer2 object implementation class looks analogously.)

6.2 Generalization and limitations

The design patterns we have developed and motivated for implementing synchronization constraint
extensions to OMG IDL may also be used to implement other IDL extensions. Examples include
adding behavior and semantic, expressing quality of service requirements, defining interaction
protocols, and several of the proposals listed in the miscellaneous category above (cf. Section 3).
In general, it is possible to implement extensions that operate on methods and types defined within
the extended interfaces through ”before” and ”after” processing steps wrapping the actual method
invocation. These constitute extensions that do not require any additional state information
not already expressed inside the interface, like ORB internal state information. For example,
expressing real-time requirements (e.g., annotating an operation with a completion time deadline)
may be realized by concurrently starting a timer with the operation invocation. Similarity, a
scheduling algorithm may dynamically decide whether a method invocation may be started given
the current system load.

However, certain limitations remain; especially, the latter real-time extensions will require
threading support to be implemented in the described manner. To achieve this in a portable
and non-platform specific way, CORBA standard support for threading is absolutely necessary.
Moreover, extensions that would require access to ORB internal APIs cannot be implemented by
third parties, since such APIs are not revealed in the CORBA standard. The emerging ”Portable
Interceptor RFP (request for proposal)” [OMGY98c] addresses some of these issues and aims at
providing means to ”intercept” a method invocation at several points in the invocation chain.
At interception points a user may insert application specific code to manipulate the method
invocation (e.g, encrypt data stream, perform access control). This RFP does not solve the
problem of accessing ORB internal APIs, it merely gives the developer more access points to
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influence method processing within the ORB. The standard technology realizing this RFP is,
at the time of this writing, still far from completed. It is therefore hardly possible to use the
ORB APIs as a ”compilation target” for an IDL processor (cf. similar problems for implementing
language mappings [Jac97a]). Note, that the CORBA product always bundles the ORB and the
IDL—compiler.

6.3 Evaluation

This section compares and evaluates the different design pattern solutions according to the fol-
lowing criteria: compliance, portability, implementation effort, client side extension, and server
side extension.

Compliance describes whether or not a solution is based on CORBA standard features only,
not requiring any additional ORB API support. Portability refers to the pattern implementation
being portable from one CORBA product to the next. Implementation effort describes whether
or not the approach requires one-time or per-ORB investment to be implemented. Client and
server side extension capture the applicability of the solution to additions at client and server
side, respectively.

adaptor DII/DSI spec. OA | compiler | filter
compliance yes yes no no no
portability yes yes no no no
implementation | one-time: | one-time: | per-ORB: | per—-ORB: | per—-ORB:
effort annotation | annotation | object IDL- support

compiler compiler adapter compiler code
client side no yes no yes yes
extension
server side yes yes yes yes yes
extension

Table 2: Comparison of different implementation patterns.

A summary evaluation and comparison is depicted in Table 2. Some of the results listed there
are still speculative as we have implemented prototype solutions only for a subset of the design
alternatives discussed.

7 Conclusion

In this paper we investigated a number of alternative solutions to add semantic information to
CORBA IDL interfaces. We designed tools that automate the synthesis of corresponding checking
code. We demonstrated how to integrate this code with the skeletons generated by CORBA IDL
compilers and the developer’s object implementation.

Our design solutions exploited different mechanisms of the CORBA standard including class
inheritance, delegation, dynamic interfaces, and specialized object adapters. These solutions were
illustrated with synchronizing access to a bounded buffer.

We also argued that the solutions presented in the main body of this paper may also be useful
to implement other IDL extensions capturing, for example, the functional behavior of interface
operations or their dynamic behavior. Further test implementations of missing design alternatives
are currently underway and first attempts with IDL extensions in terms of pre- and post-conditions
are planned for the near future.
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