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ABSTRACT 
T h e  conceptual f ramework  of a hybrid control s y s t e m  ar- 

chitecture i s  briefly motivated. It employs neural and f u z z y  
techniques on a side-by-side basis using each one  for the  
task it i s  best suited for. I n  this paper, our m a i n  interest  
i s  with the  adaptation of the  f u z z y  control knowledge. T h e  
adaptation algorithm i s  based o n  reinforcement signals and 
directly optimizes the  global f u z z y  relation representing the  
complete knowledge base. T h e  n e w  approach is  experimen- 
tally evaluated. 

I INTRODUCTION 
Neural networks are well suited for learning and 

adaptation tasks. In general, however, a neural net- 
work constitutes a black box. This means it is not 
possible to  understand how a neural controller works. 
Furthermore, it is very hard to  incorporate human a 
priori knowledge into a neural network. This is mainly 
due to the fact that the connectionist paradigm gains 
most of its power from a distributed knowledge repre- 
sentation. 

Fuzzy knowledge based systems, on the other hand, 
exhibit complementary characteristics. The incorpo- 
ration and interpretation of knowledge is straight for- 
ward, whereas learning and adaptation constitute ma- 
jor problems. 

If in a supervised learning setting a t e a c h e r  is used 
to  adapt to a process it is only possible to come up 
to  the teacher’s performance. In order to manage 
complex problems, however, the availability of such 
a teacher cannot be guaranteed. The general goal 
is to control a process that has not been prior con- 
trolled. This problem has been addressed in the past 
by reinforcement learning paradigmes, e.g. [l, 131. 
In reinforcement learning a critic evaluates ea.ch con- 
troller action or each sequence of controller actions 
by returning feedback to the controller on how well it 
meets the performance criteria. The adaptation pro- 
cess adapts the critic as well. The basic idea of our 
work is to implement the critic by a neural network 
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Figure 1: Hybrid control system architecture. (PE - 
performance element; LE - learning element). 

because the adaptation of the critic is more complex 
than the adaptation of the controller, whereas an un- 
derstanding of the critic’s behavior is far less impor- 
tant. However, we do not discuss the realization of 
the critic here. Figure 1 depicts the conceptual archi- 
tecture of the envisioned hybrid control system. 

Since controller performance is far more important 
than interpretability we propose a two step process. 
(1) a d a p t a t i o n :  a given fuzzy controller is tuned with- 
out regard to interpretability; (2) i n t e r p r e t a t i o n :  the 
adapted fuzzy knowledge is analyzed in order to  ex- 
tract a set of fuzzy rules that, at least ‘qualitative- 
ly’, represents the given knowledge base. This paper 
addresses the first step, i.e. the adaptation of fuzzy 
control knowledge. 

The key idea of our scheme is to  adapt the knowl- 
edge representing fuzzy relation locally according to 
reinforcements generated by the critic. 

Several approaches exist which combine neural and 
fuzzy techniques to so called h y b r i d  n e u r a l - f u z z y  sys- 
tems, e.g. [2, 11, 71. Most of these attempts combine 
both techniques successfully but relax fundamental 
concepts of either technique in order to better ‘merge’ 
both approaches. Our approach uses both techniques 
in complementary fashion, side-by-side, using each one 
for the task it is better suited for. 

All of the above cited approaches adapt member- 
ship function parameters. Few approaches exist which 
adapt the control knowledge forming fuzzy relation. 
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Early work by Mamdani and Procyk [12] on adaptive 
fuzzy systems updates fuzzy relations based on perfor- 
mance evaluations generated by incorporating a pro- 
cess model. Their approach updates the entire relation 
at each iteration which can be rather time consuming. 
We are looking at local modifications of the fuzzy re- 
lation based on a reinforcement signal generated by a 
separate adaptive component, the critic. 

A supervised learning algorithm for off-line adap- 
tation of fuzzy controllers is presented by Moore and 
Harris [lo] who study supervised fuzzy relation adap- 
tation, i.e. learning is based on a pre-determined set of 
state-action pairs. Our approach is independent of the 
availability of such a training set and operates on-line. 

The paper is organized as follows. Section I1 re- 
views the essential theoretic concepts underlying fuzzy 
control. Section I11 presents the reinforcement-driven 
fuzzy relation adaptation algorithm. Experiments 
evaluating the adaptation schemes are presented in 
section IV. The paper concludes by pointing out fu- 
ture directions to pursue. 

11 FORMAL APPROACH T O  FUZZY CONTROL 

A fuzzy controller is a rule based system. It consists 
of a set of fuzzy rules which are applied to the actual 
controller input to infer the controller output. In the 
following, without loss of generality, we will consider 
only a o n e  input /one  o u t p u t  system. All results are 
easily extended to systems with many input and many 
output variables. We will therefore, consider here just 
two variables, the input variable z and the output vari- 
able y, with their respective universes of discourse U, 
and U,. Additionally, we denote the generic elements 
of U, and U, by U and U, respectively. Furthermore, 
let ai and & represent fuzzy sets on the universes of 
discourse U, and U,, respectively (i E { 1, . . . , n}).  We 
will denote the fuzzy rule ”IF z is Ai THEN y is Bi” 
by [Ai + Bi]. 

The general framework for handling a fuzzy rule 
base [Ai + &] is to transform each rule into a fuzzy 
relation R i  = transform(&, Bi) on U, x U,, to aggre- 
gate these implication relations to R = aggregate(&), 
and to apply the resulting so called meta rule R by us- 
ing max-min composition. That is, given the actual 
input a on U,, the result B’ on U, of applying the 
fuzzy rule base [Ai + &] is determined by computing 

B’ = $ O R ,  (1) 

PB’ (v) = 2% min {PA’ (U ) ,  P R ( ~ ,  U)}. (2) 

This general framework has been derived by gener- 
alizing mechanisms for crisp sets. Obviously, with 
the choice of t r a n s f o r m ( )  and aggregate() there are 

some important design decisions left [8]. In the past, 
there have been lots of efforts to support these design 
decisions, most of them by conducting and evaluat- 
ing experiments, others by theoretical considerations 
[14, 151. In our work we use two complementary in- 
ference mechanisms, the well known possibilistic ap- 
proach [3, 4, 51 and a new method called cT-reasoning 
that has been developed recently [16]. This new ap- 
proach builds the theoretical justification for the well 
known MAMDANI approach to fuzzy control [SI, where 

R = transform(Ai, &) = Ai n &, and (3) 

with this last expression lbeing exactly MAMDANI’S 
way of implementing fuzzy inference. That is, MAM- 
DANI’S approach is just a special case of the general 
fuzzy inference by means of fuzzy relations (eq. (1)). 

Nevertheless, during the adaptation step there is no 
need to consider the way the meta rule is constructed. 
We may just take the fuzzy relation R for granted and 
adapt it according to the critic’s reinforcements. This 
is due to the fact, thatany meta rule is processed using 
max-min composition according to eq. (1). 

But in the second step, i.e. the knowledge interpre- 
tation phase, this information will become essential 
because we will have to look for the inverse operations 
of t rans form andl aggregate in order to reduce the re- 
sulting fuzzy relation R into a set of simple fuzzy 
rules. 

I11 ADAPTAT~ON OF FUZZY RELATIONS 

The adaptation process can be divided into two 
stages which are repeated in a cyclic manner: an ac- 
t i o n  selection stage and a knowledge update stage. The 
former selects a control action to be transmitted to the 
process, the latter adapts the fuzzy relation underly- 
ing the knowledge representabtion. Figure 2 depicts the 
adaptation process in a more detailed manner making 
reference to figurje 1. 
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while (learning has not converged) 
select an initial state zt at random 
while (no t  out of control) 

vt t Performance-Element ( z t )  
apply ut to process 
observe new state zt+l 
rt t CriticH (d, dfl, y t )  
Learning-Element ( r t )  

end 
end 

Figure 2: Loop executed by the control system. 
The different functions correspond to the components 
shown in the previous figure. 

Action selection s tage After inferring the output 
fuzzy set p g ~ ( . u )  from the meta rule R (cf. section 
11) a crisp control action has to  be derived and emit- 
ted to the process. This step is known as defuzzifi- 
cation. Several operators have been defined for this 
purpose (see [8] for an overview). For example the 
maximum defuzzification operation selects the control 
action with the maximum membership value among 
all maxima from the output fuzzy set. 

Any deterministic defuzzification scheme, however, 
does not allow the control agent to experiment with 
the available control actions since the same action is 
selected over and over again for the same input situ- 
ation. Hence, the agent cannot experience better or 
worse situations as a result of applying different ac- 
tions in the same state and can therefore not adapt its 
knowledge. If the represented knowledge is sufficient 
for meeting the performance goals and there is no need 
for improvements a deterministic defuzzification is all 
that is needed. But if the available control knowledge 
is incomplete, inconsistent or even partly wrong the 
agent needs mechanisms to acquire, fine-tune, or re- 
confirm it. This is accomplished by the trial and error 
strategy undertaken in reinforcement learning. 

The objective is that the agent learns to reliably 
judge the expected outcome of taking a specific ac- 
tion in a given state. This information will then be 
reflected in the output fuzzy set associated with the 
current input situation. 

To stimulate this kind of explorative behavior we 
introduce a randomized defuzzification scheme. It is 
similar to the maximum defuzzification operation dis- 
cussed above. Control actions are chosen randomly 
from the set of possible control actions according to 
their degrees of membership in the output fuzzy set. 
Control actions with higher degrees of membership 
have a greater chance of being selected as output as 
ones with lower degree of membership. 

Knowledge upda te  stage Given the crisp input x 
and the crisp output y we know exactly how and why 
the selected control action was chosen from the set of 
possible control actions. Observing the effect of the 
output on the process it is now possible to  reinforce 
the selection of the same control action or to suppress 
its selection in future situations. This is achieved by 
directly modifying the underlying knowledge relation. 
Clearly, the objective is to reinforce good actions and 
to suppress bad actions. Several different reinforce- 
ment schemes for updating the relation have been con- 
sidered: 
Point-wise update: 

with 0 5 cy 5 1 a learning rate and IC the reinforcement 
signal ( K  > 0 for rewards and 6 < 0 for punishments). 
The min, max operations serve to  enforce the bound- 
ary conditions. From now on we denote p ~ ( u , v )  by 
R(u, U ) .  The above update operates on a single point 
in the relation, it is therefore very precise. The fuzzy 
relation, however, is a topological representation of the 
control knowledge. It has localized meaning. Updat- 
ing a whole region centered around the point specified 
by the state-action pair has therefore a generalizing 
effect on the learning process. Since an entire neigh- 
borhood profits from a single update the number of 
learning cycles decreases for most learning situations. 

Neighborhood incorporating update: 
 VU^ E U, and V V ~  E U, 

with cy and n as above, ut an adaptive variance' and d 
a distance measure. The adaptation is here addition- 
ally a function of time. With increasing time (number 
of iterations) the updated neighborhood decreases, fi- 
nally converging to the center point. 

Fuzzy set or iented update: 
Vu; E U, and Vuj E U, 

R(ui, a j )  = max{~R(u i ,  ~ j ) ,  minb lW2 (ui), pawl (vj)}}, 

with 0 < y 5 1 a discount factor and w1, w2 parame- 
ters specifying the fuzzy set I on the input domain and 
the fuzzy set 0 on the output domain centered around 
the crisp state-action pair (z, y). The discount factor 

lThe adaptive variance: ot = uinitial ( znrt la l  . 
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y was introduced to discount the relation in situations 
where the process response patterns change. A similar 
operator was introduced in [lo]. 

IV EXPERIMENTS 
In this section the adaptation scheme is applied to  

function approximation tasks. In these tasks a con- 
troller is adapted such that it approximates a given 
function. The static character of these tasks allows us 
to study the fuzzy relation adaptation process isolated 
from the adaptive critic since the internal reinforce- 
ment signal can be easily generated by comparing the 
real value of the function to  be approximated with the 
through fuzzy inference computed value. If this differ- 
ence is sufficiently small the controller performance is 
judged as good and otherwise as bad. We observe the 
adaptation process by means of the mean square er- 
ror between the real function and the, through the 
fuzzy controller approximated function. The below 
presented, error curves show the development of the 
error over the number of iterations, averaged over the 
number of repetitions. One iteration involves an en- 
tire learning cycle (i.e. one execution of the inner loop 
of the control algorithm, cf. figure 2). It should be 
noted that the error measure depends on the chosen 
discretization and the range of function values. The 
error should therefore be interpreted in a relative man- 
ner. 

I v . 1  ADAPTATION WITH AND WITHOUT A PRIORI 
KNOWLEDGE 

Figure 3 shows error curves for the approximation 
of f(z) = z, z E [0,10]. The meta relation was initial- 
ized with a set of rules describing f in straight forward 
manner (uniform partitioning of domain, 4 rules). The 
rules were randomly distorted. The positive effect of 
initializing the meta relation with prior knowledge (i.e. 
known rules) can be seen by comparing the error with 
the error in figure 5. Both figures make reference to 
approximating the same function. 

Figures 4 compares the behavior of the above de- 
veloped updates. It follows that the fuzzy set oriented 
update performs best with regard to  speed of learning 
and smoothness of adaptation. The neighborhood in- 
corporating update lays between the fuzzy set oriented 
update and the point-wise update. These results are 
conform with other experiments completed in [6]. 

Figure 5 shows the influence of the parameter y. 
Due to the static character of the task only slight ef- 
fects are observable. The best performance is achieved 
with y close to 1. The second graph in figure 3 shows 
the influence of the parameter r .  As the width of the 
fuzzy set, defining the update operator increases, the 

" 

" 

Figure 3: Error for point-wise update (a  = 1 and fuzzy 
set oriented update ( r  = 2:,7 = 1). Learning with a 
priori knowledge. Second row: Adapted fuzzy relations 
for the approximation of fi (2) = 2, z E [0, lo]. 

Figure 4: Comparison of the error measures for the ap- 
proximation of a complex partly linear function. Fuslzy 
set oriented update (both figures, solid line, 7 = 1, 
r = 5), two dimensional update fixed variance (left fig- 
ure, dashed line, c7 = 0.4), two dimensional update time- 
decaying variance (left figure, solid line, ni = 1.5,af = 
0.2) and point-wise update (right figure, solid upper 
line, a = 0.7). 

speed and accuracy of learning augments. Intuitively 
this can be interpreted as: if one updates more in a 
single step, less overall updates have to  be effected. 

Iv.2 ADAPTATION IN CHANGING ENVIRONMENT 

To investigate the on-line adaptive capabilities of 
the proposed algorithm we diefined a learning task that 
simulates processes which exhibit sudden changes in 
their response patters. This is achieved by altering 
the function underlying the approximation task in the 
above experiments. Figures 6 and 7 show the results 
for different parameters. (cf. [lo] for similar experi- 
ment in a supervised learning setting.) 

V CONCLUSIONS 
We discuss a reinforcement-driven fuzzy relation 

adaptation algorithm whiclh is part of a complexer 
hybrid control s,ystem architecture. The adaptation 
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Figure 5: First figure: Influence of the discount factor 
y (y = 1 (solid line), y = 0.8 (dash dot line), y = 0.5 
(dashed line), y = 0.3 (solid line)). Function f from 
above. Second flgure: Study of parameter r (half-width 
of fuzzy set) (T  = 5,1.25,1.0,0.75,0.5 from left to right in 
the flgure; y = 1). Complex partly linear function. 
Learning without a priori knowledge. 

Figure 6: Approximation of g ~ ( x )  = x changing after 
T = 3000 to g2(x)  = x 2  for x E [0,1]. (Fuzzy set oriented 
updates, r = 2 , r  = 4, respectively; y = 0.93 in both 
runs). 

algorithm modifies the meta control relation accord- 
ing to reinforcements generated by a separate adap- 
tive critic component. The adaptation algorithm was 
experimentally evaluated and proved excellent perfor- 
mance. We demonstrated how the incorporation of 
a priori knowledge improved its performance. Ex- 
periments were set up to evaluate the effects chang- 
ing environments have on the behavior of the adapta- 
tion. The overall conclusion is that fuzzy relations can 
be adapted locally provided reliable reinforcements on 
the controller performance are available. 

The fuzzy relation adaptation scheme has so far been 

Figure 7: Approximation behavior during the change in 
response characteristic in process occurred. Left figure 
: solid line at T = 3000; dashed line after T = 3500; 
dashed dotted line after T = 4000. Right flgure : dash 
dotted line after T = 4500; solid line after T = 5000. 

evaluated in isolation from the discussed hybrid control 
system architecture. In a further step the adaptation al- 
gorithm will be combined with a neural adaptive critic. 
The incorporation of a critic will then permit us to test 
the control system architecture on real control problems 
and oppose it to alternate approaches. Apart from these 
extensions are we currently working on ways to extract 
fuzzy rules from the adapted meta control relation. 
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